first must be before the third. Secondly, every event must be at a certain number of instants; two events are simultaneous if they are at the same instant, and one is before the other if there is an instant, at which the one is, which is earlier than some instant at which the other is. Thirdly, if we assume that there is always some change going on somewhere during the time when any given event persists, the series of instants ought to be compact, i.e. given any two instants, there ought to be other instants between them. Do instants, as we have defined them, have these properties?
We shall say that an event is “at” an instant when it is a member of the group by which the instant is constituted; and we shall say that one instant is before another if the group which is the one instant contains an event which is earlier than, but not simultaneous with, some event in the group which is the other instant. When one event is earlier than, but not simultaneous with another, we shall say that it “wholly precedes” the other. Now we know that of two events which are not simultaneous, there must be one which wholly precedes the other, and in that case the other cannot also wholly precede the one; we also know that, if one event wholly precedes another, and the other wholly precedes a third, then the first wholly precedes the third. From these facts it is easy to deduce that the instants as we have defined them form a series.
We have next to show that every event is “at” at least one instant, i.e. that, given any event, there is at least one class, such as we used in defining instants, of which it is a member. For this purpose, consider all the events which are simultaneous with a given event, and do not begin later, i.e. are not wholly after anything simultaneous with it. We will call these the “initial contemporaries”