into my Head, which (that I may be the better understood) I will propose by way of Interrogatories to Simplicius, who started this Difficulty. To begin then: I suppose you know which are square Numbers, and which not?
“Simp. I know very well that a square Number is that which arises from the Multiplication of any Number into itself; thus 4 and 9 are square Numbers, that arising from 2, and this from 3, multiplied by themselves.
“Salv. Very well; And you also know, that as the Products are call’d Squares, the Factors are call’d Roots: And that the other Numbers, which proceed not from Numbers multiplied into themselves, are not Squares. Whence taking in all Numbers, both Squares and Not Squares, if I should say, that the Not Squares are more than the Squares, should I not be in the right?
“Simp. Most certainly.
“Salv. If I go on with you then, and ask you, How many squar’d Numbers there are? you may truly answer, That there are as many as are their proper Roots, since every Square has its own Root, and every Root its own Square, and since no Square has more than one Root, nor any Root more than one Square.
“Simp. Very true.
“Salv. But now, if I should ask how many Roots there are, you can’t deny but there are as many as there are Numbers, since there’s no Number but what’s the Root to some Square. And this being granted, we may likewise affirm, that there are as many square Numbers, as there are Numbers; for there are as many Squares as there are Roots, and as many Roots as Numbers. And yet in the Beginning of this, we said, there were many more Numbers than Squares, the greater Part of Numbers being not Squares: And tho’ the Number of