theory of number, which we shall deal with in Lecture VII., but the whole theory of physical concepts which will be outlined in our next two lectures, is inspired by mathematical logic, and could never have been imagined without it.
In both these cases, and in many others, we shall appeal to a certain principle called “the principle of abstraction.” This principle, which might equally well be called “the principle which dispenses with abstraction,” and is one which clears away incredible accumulations of metaphysical lumber, was directly suggested by mathematical logic, and could hardly have been proved or practically used without its help. The principle will be explained in our fourth lecture, but its use may be briefly indicated in advance. When a group of objects have that kind of similarity which we are inclined to attribute to possession of a common quality, the principle in question shows that membership of the group will serve all the purposes of the supposed common quality, and that therefore, unless some common quality is actually known, the group or class of similar objects may be used to replace the common quality, which need not be assumed to exist. In this and other ways, the indirect uses of even the later parts of mathematical logic are very great; but it is now time to turn our attention to its philosophical foundations.
In every proposition and in every inference there is, besides the particular subject-matter concerned, a certain form, a way in which the constituents of the proposition or inference are put together. If I say, “Socrates is mortal,” “Jones is angry,” “The sun is hot,” there is something in common in these three cases, something indicated by the word “is.” What is in common is the form of the proposition, not an actual constituent. If I say a number