empirical. But between the two lies a vast intermediate region, which we must now briefly explore.
“Molecular” propositions are such as contain conjunctions—if, or, and, unless, etc.—and such words are the marks of a molecular proposition. Consider such an assertion as, “If it rains, I shall bring my umbrella.” This assertion is just as capable of truth or falsehood as the assertion of an atomic proposition, but it is obvious that either the corresponding fact, or the nature of the correspondence with fact, must be quite different from what it is in the case of an atomic proposition. Whether it rains, and whether I bring my umbrella, are each severally matters of atomic fact, ascertainable by observation. But the connection of the two involved in saying that if the one happens, then the other will happen, is something radically different from either of the two separately. It does not require for its truth that it should actually rain, or that I should actually bring my umbrella; even if the weather is cloudless, it may still be true that I should have brought my umbrella if the weather had been different. Thus we have here a connection of two propositions, which does not depend upon whether they are to be asserted or denied, but only upon the second being inferable from the first. Such propositions, therefore, have a form which is different from that of any atomic proposition.
Such propositions are important to logic, because all inference depends upon them. If I have told you that if it rains I shall bring my umbrella, and if you see that there is a steady downpour, you can infer that I shall bring my umbrella. There can be no inference except where propositions are connected in some such way, so that from the truth or falsehood of the one something follows as to the truth or falsehood of the other. It