Socrates and man and mortal are empirical terms, only to be understood through particular experience. The corresponding proposition in pure logic is: “If anything has a certain property, and whatever has this property has a certain other property, then the thing in question has the other property.” This proposition is absolutely general: it applies to all things and all properties. And it is quite self-evident. Thus in such propositions of pure logic we have the self-evident general propositions of which we were in search.
A proposition such as, “If Socrates is a man, and all men are mortal, then Socrates is mortal,” is true in virtue of its form alone. Its truth, in this hypothetical form, does not depend upon whether Socrates actually is a man, nor upon whether in fact all men are mortal; thus it is equally true when we substitute other terms for Socrates and man and mortal. The general truth of which it is an instance is purely formal, and belongs to logic. Since it does not mention any particular thing, or even any particular quality or relation, it is wholly independent of the accidental facts of the existent world, and can be known, theoretically, without any experience of particular things or their qualities and relations.
Logic, we may say, consists of two parts. The first part investigates what propositions are and what forms they may have; this part enumerates the different kinds of atomic propositions, of molecular propositions, of general propositions, and so on. The second part consists of certain supremely general propositions, which assert the truth of all propositions of certain forms. This second part merges into pure mathematics, whose propositions all turn out, on analysis, to be such general formal truths. The first part, which merely enumerates forms, is the more difficult, and philosophically the more important;