Page:Philosophical Transactions - Volume 145.djvu/193

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.


174

MR. W. H. L. RUSSELL4ON THE THEORY OF DEFINITE INTEGRALS. The first series we propose to consider is the following:- 1 1 2 r x2 3 5 ST 221 ttana6+ 72 9tan-, + tan 1+&c.16 tan 1 2Z 9 X22 25w2 L +g2 Put Tx2, then this series with its sign changed may be resolved into the three fobl- lowing: __ __ _ X2 1 9 2 1 2(1+x9) tan2+ 2(9+x2 )3 tan32+2(25 +2)5 tan + __ x 1 _ tan+- 5-tan _ + - - tan et 4 (1- ) 2 4(3-x)3 an3.2 4(5+x) +c 4(1 +s) 2 4(3Px)3 3.224 (5+x)5*t 52+& The general terms of these series are respectively, _ _ 2 1 _ -. tan 2{(2n+1)2+x2} 2n+1 tan 2(2n + 1) a; 1g_ _ 4{f(2n+l)-x} 2u+1 ta2(2n+l), {2+- . tan 4{(2n+1)-}

  • 2n+t

2(2n + 1) These terms become after transformation,since Joodz(eaE~) 1 a -- =-tan-' Xo o2fl#s7l)U7sin dz ?-OVcs) 6-(2tl+1)ds2....1d -40aus XU (7rrZ -r r) v- - jav(e-os~ 4p~7 ss 00 00~f0 +)2~d. i Each of the series is consequently reduced to a geometrical progression; wherefore, sumlmingthe three progressionsand takinagthe aggregate, we have /o bo00 o 4 v2 -- -2(2 Vin (u 2n-)dsdvdudz JO-(2~io logilo 2e 2 /4- ~ >2Z2 2~~ 0 00 Jon 72 0 (00( - (W n 2 ) -00 d(0 (2, v2 2I' / 00duIM Kv (sCsVt_4