Page:Philosophical magazine 21 series 4.djvu/363

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
applied to Electric Currents.
339

it is broken, there will be a current through C in the same direction as the primary current.

We may now perceive that induced currents are produced when the electricity yields to the electromotive force, — this force, however, still existing when the formation of a sensible current is prevented by the resistance of the circuit.

The electromotive force, of which the components are P, Q, R, arises from the action between the vortices and the interposed particles, when the velocity of rotation is altered in any part of the field. It corresponds to the pressure on the axle of a wheel in a machine when the velocity of the driving wheel is increased or diminished.

The electrotonic state, whose components are F, G, H, is what the electromotive force would be if the currents, &c. to which the lines of force are due, instead of arriving at their actual state by degrees, had started instantaneously from rest with their actual values. It corresponds to the impulse which would act on the axle of a wheel in a machine if the actual velocity were suddenly given to the driving wheel, the machine being previously at rest.

If the machine were suddenly stopped by stopping the driving wheel, each wheel would receive an impulse equal and opposite to that which it received when the machine was set in motion.

This impulse may be calculated for any part of a system of mechanism, and may be called the reduced momentum of the machine for that point. In the varied motion of the machine, the actual force on any part arising from the variation of motion may be found by differentiating the reduced momentum with respect to the time, just as we have found that the electromotive force may be deduced from the electrotonic state by the same process.

Having found the relation between the velocities of the vortices and the electromotive forces when the centres of the vortices are at rest, we must extend our theory to the case of a fluid medium containing vortices, and subject to all the varieties of fluid motion. If we fix our attention on any one elementary portion of a fluid, we shall find that it not only travels from one place to another, but also changes its form and position, so as to be elongated in certain directions and compressed in others, and at the same time (in the most general case) turned round by a displacement of rotation.

These changes of form and position produce changes in the velocity of the molecular vortices, which we must now examine.

The alteration of form and position may always be reduced to three simple extensions or compressions in the direction of three rectangular axes, together with three angular rotations about