that the difference between the two mechanics will be the greater the greater the velocity of the planets.
If there is an appreciable difference, it will therefore be greatest for Mercury, which has the greatest velocity of all the planets. Now it happens precisely that Mercury presents an anomaly not yet explained. The motion of its perihelion is more rapid than the motion calculated by the classic theory. The acceleration is 38" too great. Leverrier attributed this anomaly to a planet not yet discovered and an amateur astronomer thought he observed its passage across the sun. Since then no one else has seen it and it is unhappily certain that this planet perceived was only a bird.
Now the new mechanics explains perfectly the sense of the error with regard to Mercury, but it still leaves a margin of 32" between it and observation. It therefore does not suffice for bringing concord into the explanation of the velocity of Mercury. If this result is hardly decisive in favor of the new mechanics, still less is it unfavorable to its acceptance since the sense in which it corrects the deviation from the classic theory is the right one. Our explanation of the velocity of the other planets is not sensibly modified in the new theory and the results coincide, to within the approximation of the measurements, with those of the classic theory.
In conclusion, it would be premature, I believe, in spite of the great value of the arguments and of the facts set up against it, to regard the classic mechanics as finally condemned. However it may be in other respects, it will remain the mechanics of very small velocities in relation to that of light, the mechanics therefore of our practical life and of our terrestrial technic. If however, in some years, its rival triumphs, I shall venture to point out a pedagogic danger that a number of teachers, in France at least, will not escape. These teachers will find nothing