Page:Popular Astronomy - Airy - 1881.djvu/45

From Wikisource
Jump to navigation Jump to search
This page has been validated.
LECTURE I.
31

weight) which make it desirable that there should be pointers at several parts of it. In the instruments at Cambridge and Greenwich, and other places, there are six pointers; they are not ordinary pointers, but microscopes, by means of which the spaces between the divisions can be sub-divided with greater accuracy than they could be by other means. Therefore you will perceive very easily, that by the use of these microscopes, viewing the circumference of this circle, it is possible to determine and register the position of this circle, (and consequently the position of the telescope which is fastened to it,) with very great accuracy indeed.

In all measures, however, we want a starting-point. What we want to ascertain with the circle is, how far the telescope is pointed above the horizon. It is therefore a very important thing to ascertain what is the reading of the circle when the telescope points horizontally. There is a contrivance used in most modern observatories for this purpose which is worthy of attention—it is the use of observations by reflection. Suppose that a star is seen by the observer to be approaching the meridian, he places a trough of quicksilver in such a direction that the star can be seen by reflection in the quicksilver. When the telescope is pointed towards the reflection in the quicksilver, then we know that the telescope is pointed below the horizon, just as much as it is pointed above the horizon to see the star by direct vision. This results from the optical law of reflection. For in Figure 13, if EG be the position of the telescope placed to receive the light which comes from the star in the direction SG, and if F′G′ be the position of the telescope placed to receive the light which comes from the star to the quicksilver in the direction