Page:Popular Science Monthly Volume 10.djvu/164

From Wikisource
Jump to navigation Jump to search
This page has been validated.
152
THE POPULAR SCIENCE MONTHLY.

to us the nature, and which assures the extirpation, of a disorder so virulent and so vile, worth the price paid for it? It is exceedingly important that assemblies like the present should see clearly the issues at stake in such questions as this, and that the properly informed common-sense of the community should temper, if not restrain, the rashness of those who, meaning to be tender, would virtually enact the most hideous cruelty by the imposition of short-sighted restrictions upon physiological investigation. It is a modern instance of zeal for God, but not according to knowledge, and an instructed public opinion must correct its excess.

 

And now let us cast a backward glance on the field we have traversed, and try to extract from our labors such further profit as they can yield. For more than two thousand years the attraction of light bodies by amber was the sum of human knowledge regarding electricity, and for more than two thousand years fermentation was effected without any knowledge of its cause. In science one discovery grows out of another, and cannot appear without its proper antecedent. Thus, before fermentation could be understood, the microscope had to be invented and brought to a considerable degree of perfection. Note the growth of knowledge. Leeuwenhoek, in 1680, found yeast to be a mass of floating globules, but he had no notion that the globules were alive. This was proved in 1835 by Cagniard de la Tour and Schwann. Then came the question as to the origin of such microscopic organisms, and in this connection the memoir of Pasteur, published in the "Annales de Chimie" for 1862, is epoch-making, proving as it did to all competent minds spontaneous generation to be thus far a chimera. On that investigation all Pasteur's subsequent labors were based. Ravages had over and over again occurred among French wines. There was no guarantee that they would not become acid or bitter, particularly when exported. The commerce in wines was thus restricted, and disastrous losses were often inflicted on the wine-grower. Every one of these diseases was traced to the life of an organism. Pasteur ascertained the temperature which killed these ferments of disease, proving it to be so low as to be perfectly harmless to the wine. By the simple expedient of heating the wine to a temperature of 50° centigrade, he rendered it unalterable, and thus saved his country the loss of millions. He then went on to vinegar—vin aigre, acid wine—which he proved to be produced by a fermentation set up by a little fungus called Mycoderma aceti. Torida, in fact, converts the grape-juice into alcohol, and Mycoderma aceti converts the alcohol into vinegar. Here also frequent failures occurred and severe losses w r ere sustained. Through the operation of unknown causes, the vinegar often became unfit for use; sometimes, indeed, falling into utter putridity. It had been long known that mere exposure to the air was sufficient to destroy it. Pasteur studied all