Page:Popular Science Monthly Volume 13.djvu/621

From Wikisource
Jump to navigation Jump to search
This page has been validated.
THE ORIGIN OF FRUITS.
603

Doubtless the earliest seeds differed but little from the spores of ferns and other flowerless plants in the amount of nutriment with which they were provided and the mode in which they were dropped upon the nursing soil beneath. But as time went on, during the great secondary and tertiary ages of geology, throughout whose long course first the conifers and then the true flowering plants slowly superseded the gigantic horsetails and tree-ferns of the coal-measures, many new devices for the dispersion and nutrition of seeds were gradually developed by the pressure of natural selection.[1] Those plants which merely cast their naked embryos adrift upon the world to shift for themselves in the fierce struggle of stout and hardy competitors must necessarily waste their energies in the production of an immense number of seeds. In fact, calculations have been made which show that a single scarlet corn-poppy produces in one year no less than 50,000 embryos; and some other species actually exceed this enormous figure. If, then, any plant happens by a favorable combination of circumstances to modify the shape of its seed in such a manner that it can be more readily conveyed to open or unoccupied spots, it will be able in future to economize its strength, and thus to give both itself and its offspring a better chance in the struggle for life. There are many ways in which natural selection has effected this desirable consummation.

The thistle, the dandelion, and the cotton-bush, provide their seeds with long tufts of light hair, thin and airy as gossamer, by which they are carried on the wings of the wind to bare spaces, away from the shadow of their mother-plant, where they may root themselves successfully in the vacant soil. The maple, the ash, and the pine, supply their embryos with flattened wings, which serve them in like manner not less effectually. Both these we may classify as wind-dispersed seeds. A second set of plants have seed-vessels which burst open explosively when ripe, and scatter their contents to a considerable distance. The balsam forms the commonest example in our European gardens; but a well-known tropical tree, the sand-box, displays the same peculiarity in a form which is almost alarming, as its large, hard, dry capsules fly apart with the report of a small pistol, and drive out the disk-shaped nuts within so forcibly as to make a blow on the cheek decidedly unpleasant. These we may designate as self-dispersed seeds. Yet a third class may be conveniently described as animal-dispersed, divisible once more into two sub-classes, the involuntarily and the voluntarily aided. Of the former kind we have examples in those seeds which, like burs and cleavers, are covered with little hooks, by whose assistance they attach themselves to the fur or wool of passers-by. The latter or voluntarily aided sort are exemplified in fruits proper, the subject of our

  1. I trust that in the sequel the critical botanist will excuse me for having neglected the strict terminology of carpological science, and made no distinction between seeds and fruits. Some little simplification is absolutely necessary for general readers in this the most involved department of structural botany.