Page:Popular Science Monthly Volume 14.djvu/823

From Wikisource
Jump to navigation Jump to search
This page has been validated.
WHY DO WE EAT OUR DINNER?
803

tive steam-engine, with whom food stands in the place of fuel, while the possible kinds of movement are infinitely more varied and specialized. I do not mean to advance any of those "automatic" theories which have been so current of late years. Whether they are true or false, they have nothing to do with our present subject. I only want to put in a plain light an accepted scientific truth. Men differ enormously from steam-engines in their possession of consciousness, wills, desires, pleasures, pains, and moral feelings; but they agree with them in the purely physical mechanism of their motor organs. A man, like a steam-engine, can not move without his appropriate fuel; and if the fuel is not supplied, the fire goes out and the man dies. The exact manner in which the materials are utilized for keeping up this vital flame is the question to which we must now address ourselves.

Food-stuffs and coal agree essentially in the chief characteristics of their chemical constitution. Both consist mainly of hydrogen and carbon, and both possess energy in virtue of the fact that their affinities for oxygen are not satisfied. Water contains hydrogen, and carbonic acid contains carbon; but we can get no motion out of these, because in them the oxygen has already united with the atoms for which it had affinity, and the separation necessary for dormant energy has ceased to exist. But in bread, meat, potatoes, or coal, the hydrogen and carbon remain in their free state, ready to unite with oxygen whenever the chance is presented to them. All alike obtained their energy in the same way. The rays of sunlight falling upon the leaves of their original trees or plants separated the oxygen from the water and carbonic acid in the air, and built up the free hydrocarbons in their tissues. The energy which they thus drank in has remained dormant within them ever since: in the case of the bread for a few short months, in that of the coal for countless millions of geological cycles. But, however long it may have rested in that latent form, whenever an opportunity occurs the atoms will reunite with oxygen, and the energy will once more assume the active shape. There is really only one serious difference between coal and food, and that is that most foods contain another element, nitrogen, as well as carbon and hydrogen; and this nitrogen is an absolute necessity for the animal if it is to continue living. But there are good reasons for suspecting that nitrogen is not itself a fuel, being rather analogous in its nature to a match, and having for its business to set up the first beginnings of a fire, not to keep the fire going when it has once been lighted. So that this apparent difference of kind is really seen to be unimportant when we get to the bottom of the question.

The various matters which an animal eats consist of pure food-stuffs and of useless concomitant bodies: just as coal consists of pure fuel and of the useless mineral matter known as ash. When an animal eats his dinner, the process of digestion and assimilation takes place, and has the ultimate result of separating the pure food-stuffs from the