Page:Popular Science Monthly Volume 15.djvu/464

From Wikisource
Jump to navigation Jump to search
This page has been validated.
448
THE POPULAR SCIENCE MONTHLY.

But if it escapes the earth, and continue its course along its orbit, it loses speed for the next sixteen years, until it passes the farthest part of its orbit at its slowest pace, which is about a mile and a third per second. In each revolution its velocity oscillates between these extremes. Its orbit is so vast that it takes thirty-three years and a quarter to get round it.

Such is a good picture of the course pursued by each member of the great November swarm. There are countless myriads of meteors in this mighty group, each one moving independently of the rest, each one fulfilling its own destiny. They form, together, an enormous stream of meteors, the dense part of which appears to be about 100,000 miles in width, and of immense length. The orbit along which they travel was represented on the diagram by an ellipse of 207 centimetres, or close upon seven feet, long—i. e., by an oval about as long and broad as the hall-door of a house; and the length, breadth, position, and motion of the swarm in 1865, before it reached the earth, would be represented on the same scale by a thread of the finest sewing-silk, about a foot and a half or two feet long, creeping inward along the orbit, the rear of the column having been between the orbits of Jupiter and Saturn, and the front of it nearly as far in as the earth's orbit. The actual train which is thus represented was so amazingly long that even moving at the rate of twenty-seven miles a second, it took upward of two years to pass the point where its path crosses the earth's orbit. The earth passes this point on the morning of the 14th of November in every year. The head of the dense part of the stream seems to have reached the same point early in the year 1866. The earth was then in a distant part of its orbit, but on the following 14th of November we came round to the place where the great stream of meteors was pouring across our path. The earth then passed through the swarm, just as you might imagine a speck, too small to be seen by the eye, to be carried on the point of a fine needle in a sloping direction through the thread which represents the meteors. The earth took about five hours to pass through the stream; and it was Europe, Asia, and Africa, which happened at the time to be moving forward. Accordingly, it was upon this side of the earth, on that occasion, that the meteors were poured, and they produced the gorgeous display in our atmosphere which many here must remember. In 1867, when we came round again to the same place, the stream of meteors was still there, America, this time, chanced to be the part of the globe which was turned in the right position to receive the shower. In 1868 the mighty swarm had not passed, and in subsequent years, when we came round to the proper place, we still found ourselves among outlying stragglers of the great procession.

In 1799 Humboldt was traveling in South America, and on the morning of the 12th of November in that year the November shower was poured out over the New World. Humboldt's description of this