Page:Popular Science Monthly Volume 15.djvu/756

From Wikisource
Jump to navigation Jump to search
This page has been validated.
736
THE POPULAR SCIENCE MONTHLY.

cellular mass which serves as the first nutriment for the embryo—in the seeds of most Phanerogams. The formation of the endosperm has been carefully studied by Strasburger in the embyro-sac of the kidney-bean, and may serve as an example of the process of free-cell formation. The embryo-sac is morphologically a large cell with its protoplasm, nucleus, and cellulose wall, while the endosperm which arises within it is composed of a multitude of minute cells united into a tissue. The formation of the endosperm is preceded by the dissolution and disappearance of the nucleus of the embryo-sac, and then in the midst of the protoplasm of the sac several new nuclei make their appearance. Around each of these as a center the protoplasm of the mother cell is seen to have become differentiated in the form of a clear spherule, and we have thus corresponding to each of the new nuclei a young naked cell, which soon secretes over its surface a membrane of cellulose. The new cells, when once formed, multiply by division, press one on the other, and so combining into a cellular mass, constitute the completed endosperm.

Related to the formation of new cells, whether by division or by free-cell formation, is another very interesting phenomenon of living protoplasm known as "rejuvenescence." In this the whole protoplasm of a cell, by a new arrangement of its parts, assumes a new shape and acquires new properties. It then abandons its cellulose chamber, and enters on a new and independent life in the surrounding medium.

A good example of this is afforded by the formation of swarm spores in Œdogonium, one of the fresh-water algæ. Here the whole of the protoplasm of an adult cell contracts, and by the expulsion of its cell-sap changes from a cylindrical to a globular shape. Then one spot becomes clear, and a pencil of vibratile cilia here shows itself. The cellulose wall which had hitherto confined it now becomes ruptured, and the protoplasmic sphere, endowed with new faculties of development and with powers of active locomotion, escapes as a swarm spore, which, after enjoying for a time the free life of an animal, comes to rest, and develops itself into a new plant.

The beautiful researches which have within the last few years been made by the observers already mentioned, on the division of animal cells, show how close is the agreement between plants and animals in all the leading phenomena of cell-division, and afford one more proof of the essential unity of the two great organic kingdoms.

There is one form of cell which, in its relation to the organic world, possesses a significance beyond that of every other, namely, the egg. As already stated, the egg is, wherever it occurs, a typical cell, consisting essentially of a globule of protoplasm enveloping a nucleus (the "germinal vesicle"), and with one or more nucleoli (the "germinal spots") in the interior of the nucleus. This cell, distinguishable by no tangible characters from thousands of other cells, is nevertheless destined to run through a definite series of developmental changes,