Page:Popular Science Monthly Volume 16.djvu/249

From Wikisource
Jump to navigation Jump to search
This page has been validated.
PALEONTOLOGICAL DISCOVERY.
235

cies, and used all his great influence to crush out the doctrine of evolution, then first proposed. Cuvier's definition of a species, the dominant one for half a century, was as follows: "A species comprehends all the individuals which descend from each other, or from a common parentage, and those which resemble them as much as they do each other."

The law of "Correlation of Structures," as laid down by Cuvier, has been more widely accepted than almost anything else that bears his name; and yet, although founded in truth, and useful within certain limits, it would certainly lead to serious error if applied widely in the way he proposed.

In his discourse he sums up this law as follows: "A claw, a shoulder-blade, a condyle, a leg or arm bone, or any other bone separately considered, enables us to discover the description of teeth to which they have belonged; so also reciprocally we may determine the form of the other bones from the teeth. Thus, commencing our investigation by a careful survey of any one bone by itself, a person who is sufficiently master of the laws of organic structure may, as it were, reconstruct the whole animal to which that bone had belonged."

We know to-day that unknown extinct animals can not be restored from a single tooth or claw, unless they are very similar to forms already known. Had Cuvier himself applied his methods to many forms from the early Tertiary or older formations, he would have failed. If, for instance, he had had before him the disconnected fragments of an Eocene Tillodont, he would undoubtedly have referred a molar tooth to one of his pachyderms; an incisor tooth to a rodent; and a claw-bone to a carnivore. The tooth of a Hesperornis would have given him no possible hint of the rest of the skeleton, nor its swimming feet the slightest clew to the ostrich-like sternum or skull. And yet the earnest belief in his own methods led Cuvier to some of his most important discoveries.

Jean Lamarck (1744-1829), the philosopher and naturalist, a colleague of Cuvier, was a learned botanist before he became a zoologist. His researches on the invertebrate fossils of the Paris Basin, although less striking, were not less important than those of Cuvier on the vertebrates; while the conclusions he derived from them form the basis of modern biology. Lamarck's method of investigation was the same essentially as that used by Cuvier, namely, a direct comparison of fossils with living forms. In this way he soon ascertained that the fossil shells imbedded in the strata beneath Paris were many of them extinct species, and those of different strata differed from each other. His first memoir on this subject appeared in 1802,[1] and, with his later works, effected a revolution in conchology. His "System of Invertebrate Animals" appeared the year before, and his famous "Philosophie Zoölogique" in 1809. In these two works, Lamarck first announced

  1. "Mémoires sur les Fossiles des Environs de Paris," 1802-'6.