Page:Popular Science Monthly Volume 19.djvu/150

From Wikisource
Jump to navigation Jump to search
This page has been validated.
140
THE POPULAR SCIENCE MONTHLY.

agus. They do not require the arteries to be cut, for the nature of those vessels was not known when the rules were made, but the arteries and the important nerves around their sheath are cut in practice, and the animal speedily faints into insensibility, and dies of hæmorrhage. The important points of the code are, that the steps in slaughter shall be continuous, because any interruption, however minute, in the process, is likely to prolong the sufferings of the animal and make it unfit for food; that the cut shall be made by a to-and-fro stroke, without any pressure beyond what is required to carry the knife down to the necessary depth; that the incision in the skin shall accurately coincide in length with the deeper portion, so as to leave no "tail" to the wound; that the wound shall not be made so high as to risk contact of the knife with the bony structures above the cartilaginous rings of the trachea, for this would be likely to cause preventable suffering to the animal, and compel the rejection of its flesh as food; and that no tissue should be torn or jagged. The candidate for a license to slaughter has to go through a long course of preparation, of which a kind of rough anatomy forms a part, and afterward to prove his competency to the satisfaction of the appointed authorities. The heart is also carefully examined, to ascertain whether it is fit for food. The rules on this subject, although made before anything was accurately known of pathology, contribute, as a whole, to the selection of that which is good and to the rejection of that which is bad. The use of the blood is forbidden, and it is in the blood that science to-day tells us the germs and the matters that are detrimental are most likely to be found and to be most active. The lung is the organ most diligently searched and severely tested; and it is the lung which is most liable to disease, and in which, when disease is present, it is most obvious. Fewer directions are given concerning search for morbid conditions in the other organs, "for, as it was known that animals were but rarely perfectly sound in their entire system, a more rigid search would have been nearly tantamount to depriving the people altogether of animal food. But, although a search for other diseased organs is not enjoined, any morbid condition observed by the practiced eye of the slaughterer insures the rejection of the animal as food."

The Origin and Progress of Pisciculture.—M. Ph. Gauckler, in a recent work on fresh-water fishes, has reviewed the history of pisciculture from the earliest times to the present. In modern times, Dom Pinchon, a monk of the Abbey of Réome, in the fourteenth century, hatched fish in boxes through which a current of water was kept slowly flowing. The Chinese practice of placing limbs of trees or herbs in the spawning-places to collect the eggs has been in vogue from time immemorial in Europe, chiefly in the ponds of Bohemia. A Swedish magistrate named Lund, of Linköping, adopted it successfully in 1761, after having casually remarked that eggs which clung to juniper-branches did better than those which fell to the ground. In 1834 Mauro Rusconi, an Italian, successfully propagated the tench, the bleak, and the perch, in the lake of Como; and MM. Agassiz and Vogt began at about the same time their embryological experiments on the Salmonidæ, with the view of multiplying one of the species in the lake of Neufchâtel. Mr. John Shaw, of Drumlanrig, adopted artificial culture to increase the product of the salmon-fisheries of the river Nith, in Scotland. His example was followed by Lord Gray, on the Tay, in 1838, and by others in 1841. Joseph Remy, of La Bresse, in the Vosges, made his first experiments in artificial reproduction, having, by his own investigations, discovered a process of which Jacobi had given an account, but which had not attained publicity eighty years before. M. Coste, of the College of France, perceived the importance of this discovery and adopted it in 1850, while he secured a suitable reward to Remy. The attention of several persons in France was directed to pisciculture by the enthusiastic publications of M. Coste, and the experiments of M. de Quatrefages and other members of the Society of Acclimation. They were encouraged by the gratuitous distribution of eggs and fry, which were liberally furnished to French and foreign customers from the establishment of Huningue. During the later years of the French adminis-