Page:Popular Science Monthly Volume 2.djvu/407

From Wikisource
Jump to navigation Jump to search
This page has been validated.
THE LAW OF STORMS DEVELOPED.
391

on our Western plains as the laboring wheel of the steamship buried in a heavy sea, all attest that a body cannot move on the earth's surface in a straight line. It is not more true with us that the Gulf Stream turns to the eastward, the Polar Stream to the westward, and the equatorial currents to the northward, than that every air-current, in obedience to the same law, should turn to the right of the line along which from any cause it is called to move. The meteorist has therefore only to ascertain by observation where the barometer is lowest, to know at once the direction of the winds from the circumjacent districts, far and near, or at least to test the mathematical law by a grand experiment.

The tangential and centripetal forces, acting at the same time on any particle of air in the storm, may be equal or very unequal, and the cyclonic character of the gale may be well marked or partly concealed. In the tornado, with a diameter of only a few hundred feet, the tangential force may not be appreciable to an observer, but it is present, and intensely assists in communicating vorticose motion to the storm, whose roar is heard with awe by the stoutest heart, as it crashes through the forest and even ploughs up the soil of the earth. If the cyclonic or spiral feature should fail to manifest itself in any storm, we ought to look for such failure in the tornado. It is true that no barometric readings have ever been taken in the narrow heart of a tornado, but abundant evidence exists of the fearful rarefaction in the centre. While the meteor, once set in motion, may move forward with great velocity and destructiveness, the danger is clearly due to the intro-rushing and gyratory winds. There is not an instance, it is believed, recorded in which a tornado moved as much as 100 miles an hour; probably one-half that velocity would be too high an estimate for its usual and ordinary motion. But the wind, moving straightforward at the rate of 60 or 80 miles an hour, never worked any thing like the disaster of a tornado. In the West-Indian hurricane, blowing at the rate of 100 miles an hour, houses have been blown down, ships inumerable stranded; but all this is mere child's-play compared to the suction and whirl of the tornado. The conclusion forced upon us is, that the ravages of the latter are due, not to the weight of the atmosphere, moving as a river-torrent in a straight line, nor to the rush of air behind the travelling vacuum, but to the torsive, racking motion—imparted to every object in its path—due to its gyration. To prove that this gyration is always from right to left, or against the hands of a watch, is, of course, practically impossible; but such a direction has often been observed in tornadoes.

It may, therefore, be safely concluded that, for all processes of meteorologic calculation, the disturbance, if not such at first, will soon become cyclonic. All daily weather-charts demonstrate this, not by a laboratory or lecture-room experiment, but on an infinitely wider and grander scale, and in a manner far more conclusive than any merely