Page:Popular Science Monthly Volume 2.djvu/548

From Wikisource
Jump to navigation Jump to search
This page has been validated.

upon galvanic instruments, and can even excite contractions in other muscles.

Independent of these nervous and muscular electric currents, other sources of this fluid exist in the animal economy. Currents are produced between the outer and inner surfaces of the skin, in the blood, in the secreting vessels—in fine, almost throughout the whole organism. The experiments, as delicate as original, to which Becquerel has for several years devoted all the activity of his green old age, authorizes him now to assert the preponderance of electro-capillary phenomena in animal life. According to this accomplished physicist, two solutions of different nature, both conductors of electricity, separated by a membrane or a capillary space, compose an electro-chemic circuit; and, if we reflect on the anatomical elements of the various tissues, cells, tubes, globules, etc., in their connections with the fluids that moisten them, we find that they give rise to an infinite number of pairs constantly evolving electricity. The blood of the arteries with that of the veins forms a pair, having an electro-motive power of 0.57, that of a pair with nitric acid being 100. Becquerel explains, by the intervention of these currents, many physiological phenomena hitherto imperfectly understood. Granting the reality of such actions, yet it must be acknowledged that the general doctrine which combines them each with the other, and links the whole together with the various modes of action of the organism, is far from being clear and precise. We need to know how these currents are distributed and circulate, what lines and courses they follow. It is now time for experimental physiology to attack these difficult problems, the solution of which is absolutely necessary for accurate knowledge of vital determinations, that is, for the computation and the estimate of those various factors which are terms in all the equations of organic movement.

Vegetables, too, develop electricity. Pouillet has clearly demonstrated that vegetation throws it off. Other physicists, particularly Becquerel, have proved the existence of currents in the fruits, stems, roots, and leaves of plants. Becquerel took a branch of young poplar full of sap, introduced a platinum wire into the wood and another into the bark, and brought the two ends of the conductors together in a galvanoscope—the needle at once showed the passage of a current. Buff has lately made experiments, taking care not to injure the organs. Two vessels containing mercury receive platinum wires; over the mercury stood water containing the vegetables to be examined as to their electric condition. Taking the leaves and roots, Buff proved a current passing through the plant from the roots to the leaves; in a branch severed from the stem the current passed toward the leaves, too. To sum up, the existence of vital electricity is incontestable, though we do not yet precisely understand the conditions of this internal excitement, and know nothing of its true relations with the unity of physico-chemical operations in the living organism.