Page:Popular Science Monthly Volume 20.djvu/183

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
THE RISE AND PROGRESS OF PALEONTOLOGY.
171

our latitudes, and which are either extinct or exist only in more northern climates. Thirdly, in Siberia and in other northern regions of Europe and of Asia, bones and teeth of elephants, rhinoceroses, and hippopotamuses occur in such numbers that these animals must once have lived and multiplied in those regions, although at the present day they are confined to southern climates. The deposits in which these remains are found are superficial, while those which contain shells and other marine remains lie much deeper. Fourthly, tusks and bones of elephants and hippopotamuses are found not only in the northern regions of the Old World, but also in those of the New World, although, at present, neither elephants nor hippopotamuses occur in America. Fifthly, in the middle of the continents, in regions most remote from the sea, we find an infinite number of shells, of which the most part belong to animals of those kinds which still exist in southern seas, but of which many others have no living analogues; so that these species appear to be lost, destroyed by some unknown cause. It is needless to inquire how far these statements are strictly accurate; they are sufficiently so to justify Buffon's conclusions that the dry land was once beneath the sea; that the formation of the fossiliferous rocks must have occupied a vastly greater lapse of time than that traditionally ascribed to the age of the earth; that fossil remains indicate different climatal conditions to have obtained in former times, and especially that the polar regions were once warmer; that many species of animals and plants have become extinct; and that geological change has had something to do with geographical distribution.

But these propositions almost constitute the framework of paleontology. In order to complete it but one addition was needed, and that was made, in the last years of the eighteenth century, by William Smith, whose work comes so near our own times that many living men may have been personally acquainted with him. This modest land-surveyor, whose business took him into many parts of England, profited by the peculiarly favorable conditions offered by the arrangement of our secondary strata to make a careful examination and comparison of their fossil contents at different points of the large area over which they extend. The result of his accurate and widely extended observations was to establish the important truth that each stratum contained certain fossils which are peculiar to it; and that the order in which the strata, characterized by these fossils, are superimposed one upon the other is always the same. This most important generalization was rapidly verified and extended to all parts of the world accessible to geologists; and now it rests upon such an immense mass of observations as to be one of the best established truths of natural science. To the geologist this discovery was of infinite importance, as it enabled him to identify rocks of the same relative age, however their continuity might be interrupted or their composition altered. But to the biologist it had a still deeper meaning, for it demonstrated