Page:Popular Science Monthly Volume 20.djvu/209

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
A HALF-CENTURY OF SCIENCE.
197

of carbon in some form. A photographic spectrum of the comet recently visible, obtained by the same observer, is considered by him to prove that nitrogen, probably in combination with carbon, is also present.

No element has yet been found in any meteorite, which was not previously known as existing in the earth, but the phenomena which they exhibit indicate that they must have been formed under conditions very different from those which prevail on the earth's surface. I may mention, for instance, the peculiar form of crystallized silica, called by Maskelyne, asmanite; and the whole class of meteorites, consisting of iron generally alloyed with nickel, which Daubrée terms holosiderites. The interesting discovery, however, by Nordenskjöld, in 1870, at Ovifak, of a number of blocks of iron alloyed with nickel and cobalt, in connection with basalts containing disseminated iron, has, in the words of Judd, "afforded a very important link, placing the terrestrial and extra-terrestrial rocks in closer relations with one another."

We have as yet no sufficient evidence to justify a conclusion as to whether any substances exist in the-heavenly bodies which do not occur in our earth, though there are many lines which can not yet be satisfactorily referred to any terrestrial element. On the other hand, some substances which occur on our earth have not yet been detected in the sun's atmosphere. Such discoveries as these seemed, not long ago, entirely beyond our hopes. M. Comte, indeed, in his "Cours de Philosophic Positive," as recently as 1842, laid it down as an axiom regarding the heavenly bodies, that "nous concevons la possibilité de déterminer leurs formes, leurs distances, leurs grandeurs et leurs mouvements, tandis que nous ne saurions jamais étudier par aucun moyen leur composition chimique ou leur structure minéralogique." Yet within a few years this supposed impossibility has been actually accomplished, showing how unsafe it is to limit the possibilities of science.

It is hardly necessary to point out that, while the spectrum has taught us so much, we have still even more to learn. Why should some substances give few, and others many, lines? Why should the same substance give different lines at different temperatures? What are the relations between the lines and the physical or chemical properties? We may certainly look for much new knowledge of the hidden actions of atoms and molecules from future researches with the spectroscope. It may even, perhaps, teach us to modify our views of the so-called simple substances. Prout long ago, struck by the remarkable fact that nearly all atomic weights are simple multiples of the atomic weight of hydrogen, suggested that hydrogen must be the primordial substance. Brodie's researches also naturally fell in with the supposition that the so-called simple substances are in reality complex, and that their constituents occur separately in the hottest regions