Page:Popular Science Monthly Volume 20.djvu/224

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

and its importance has increased with the progress of the science. It would take too long to enumerate all the theoretical views which have prevailed at various times during the past fifty years; hut the theory which along with the radical theory has exercised most influence on the development of the views now held, is the theory of types, first stated by Dumas (1839), and developed in a different form and amalgamated with the radical theory by Gerhardt and Williamson (18481852). It is, however, the less necessary to refer in detail to these views, seeing that in the now prevailing theory of atomicity we possess a generalization which, while greatly extending the scope of chemical science in its power of classifying known and predicting unknown facts, includes all that was valuable in the generalizations which preceded it. The study of the behavior of organo-metallic compounds in chemical reactions led to the conclusion that various metallic elements possess a definite capacity of saturation with regard to the number of atoms of other elements with which they can combine, and demonstrated this regularity of atom-fixing power in the case of zinc, tin, arsenic, and antimony. A serious obstacle, however, in the way of determining the true atomicities of the elements was the general employment of the old so-called equivalent weights, which were by most chemists confounded with the atomic weights. This difficulty was removed by the rectification of the atomic weights, which, though begun by Gerhardt as early as 1842, met for a long time with but little recognition, and was not completed till the subject was taken up by Cannizzaro in 1858. The law of atomicity has given to chemistry an exactness which it did not previously possess, and since its discovery and recognition chemical research has moved very much on the lines laid down by this law.

Chemists have been engaged in determining, by means of decompositions, the molecular architecture, or constitution as it is called, of various compounds, natural and artificial, and in verifying by synthesis the correctness of the views thus arrived at.

It was long supposed that an impassable barrier existed between inorganic and organic substances: that the chemist could make the former in his laboratory, while the latter could only be produced in the living bodies of animals or plants—requiring for their construction not only chemical attractions, but a supposed "vital force." It was not until 1828 that Wöhler broke down this barrier by the synthetic production of urea, and since his time this branch of science in the hands of Hofmann, Wurtz, Berthelot, Butlerow, and others, has made great strides.

Innumerable natural compounds have thus been produced in the laboratory—ranging from bodies of relatively simple constitution, such as the alcohols and acids of the fatty series, to bodies of such complex molecular structure as alizarine (the principal coloring-matter of madder), coumarine (the odoriferous principle of the Tonka bean), vanilline,