The height to which the tides rise and fall is so profoundly modified by the coasts and by the depth of the sea, that at present we find at different localities tides of only a few inches and tides of sixty or seventy feet. In ancient times there were no doubt also great varieties in the tidal heights, owing to local circumstances. To continue our calculations we must take some present tide. Let us discard the extremes just indicated and take a moderate tide of three-feet rise and three-feet fall as a type of our present tides. On this supposition, what is to be a typical example of a tide raised by the 40,000-mile moon? If the present tides be three feet, and if the early tides be 216 times their present amount, then it is plain that the ancient tides must have been 648 feet.
There can be no doubt that in ancient times tides of this amount, and even tides very much larger, must have occurred. I ask the geologists to take account of these facts, and to consider the effect—a tidal rise and fall of 648 feet twice every day. Dwell for one moment on the sublime spectacle of a tide of 648 feet high, and see what an agent it would be for the performance of geological work! We are now standing, I suppose, some 500 feet above the level of the sea. The sea is a good many miles from Birmingham, yet if the rise and fall at the coasts were 648 feet, Birmingham might be as great a sea-port as Liverpool. Three quarters tide would bring the sea into the streets of Birmingham. At high tide there would be about 150 feet of blue water over our heads. Every house would be covered, and the tops of a few chimneys would alone indicate the site of the town.
In a few hours more the whole of this vast flood would have retreated. Not only would it leave England high and dry, but probably the Straits of Dover would be drained, and perhaps even Ireland would in a literal sense become a member of the United Kingdom. A few hours pass, and the whole of England is again inundated, but only again to be abandoned.
These mighty tides are the gift which astronomers have now made to the working machinery of the geologist. They constitute an engine of terrific power to aid in the great work of geology. What would the puny efforts of water in other ways accomplish when compared with these majestic tides and the great currents they produce?
In the great primeval tides will probably be found the explanation of what has long been a reproach to geology. The early Palæozoic rocks form a stupendous mass of ocean-made beds which, according to Professor Williamson, are twenty miles thick up to the top of the Silurian beds. It has long been a difficulty to conceive how such a gigantic quantity of material could have been ground up and deposited at the bottom of the sea. The geologists said, "The rivers and other agents of the present day will do it if you give them time enough." But, unfortunately, the mathematicians and the natural philosophers would not give them time enough, and they ordered the geologists to "hurry