Page:Popular Science Monthly Volume 23.djvu/111

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
THE BOUNDARIES OF ASTRONOMY.
101

In the first place, let us distinctly understand what is meant by our sidereal system. We have already dwelt on the isolated position of the sun and the attendant planets. The grandest truth in the whole of astronomy is that which asserts that our sun is only a star separated by the most gigantic distances from the other stars around. Our sun, indeed, appears to be but one of the vast host of stars which form the milky way. We need not here enter into the often-discussed question as to whether the nebulæ are, generally speaking, at distances of the same order as the stars. There seems to be no doubt that some of the nebulæ are quite as near to us as some of the stars. At all events, for our present purpose, we may group the milky way, the nebulæ, the stars, and the clusters, all into one whole which we call our sidereal system. Is this sidereal system as thus defined an isolated object in space? are its members all so bound together by the law of universal gravitation that each body, whatever be its movements, can only describe a certain path such that it can never depart finally from the system? This is a question of no small importance. It presents features analogous to certain very interesting problems in biology which the labors of Mr. Wallace have done so much to elucidate. We are told that the fauna and flora of an oceanic island, cut off from the perpetual immigration of new forms, often assumes a very remarkable type. The evolution of life under such circumstances proceeds in a very different manner to the corresponding evolution in an equal area of land which is connected with the great continental masses. Is our sidereal system to be regarded as an oceanic island in space, or is it in such connection with the systems in other parts of space as might lead us to infer that the various systems had a common character?

The evidence seems to show that the stars in our system are probably not permanently associated together, but that in the course of time some stars enter our system and other stars leave it, in such a manner as to suggest that the bodies visible to us are fairly typical of the general contents of the universe. The strongest evidence that can be presented on this subject is met with in the peculiar circumstances of one particular star. The star in question is known as No. 1830 of Groombridge's catalogue. It is a small star, not to be seen without the aid of a telescope. This star is endowed with a very large proper motion. It would not be correct to say that its proper motion exceeds that of any other known star, but it certainly has the largest visible proper motion of any star of which the distance is known. The proper motion of 1830 Groombridge amounts to over seven seconds annually. It would take between two and three centuries to move over a distance in the heavens equal to the apparent diameter of the moon. The distance of this star is much greater than might have been anticipated from its very large proper motion. The estimates of the distance present some irregularities, but we shall probably be