Page:Popular Science Monthly Volume 24.djvu/270

From Wikisource
Jump to navigation Jump to search
This page has been validated.



more than an ordinary acquaintance with the effects of glass electrical machines, sealing-wax experiments, etc., etc. The knowledge must be experimental, and it must be quantitative, not merely qualitative. No person ever learned electricity from a book. If one wants to know why a particular dynamo is more efficient than another, he must enter on a course of professional education, like that of studying medicine or reading law. Night after night, in England, many young men come thirty miles to learn how the efficiency of an electric lamp, storage-battery, or a dynamo-machine, is actually measured—how to obtain experimentally the characteristic curves of dynamo-machines of different speeds, calibrating galvanometers, testing magnets, etc.

It would not have been extremely difficult to give lectures on electrical engineering twenty years ago, but the development of the science now is so great that it would be an exceedingly laborious matter to prepare a course on the subject without efficient apparatus. Of the importance of such lectures there can be no doubt, and the time will come when the principles, at least, of electrical engineering will be taught in our schools. The new developments of the science and art can hardly be exaggerated; and while at one time scientific men were of the opinion that the popular mind erred in supposing that electricity would supersede steam as a motive power, engines are now employed to produce power, while electricity affords us the very best means yet discovered of distributing that power.

Electricity does not yet take the place of steam, but it takes the place of cogs, wheels, belting, etc.

A word as to the time necessary to become an electrical engineer. It is claimed by some that six months' study suffices to make a good electrician; but experience teaches us that a year and a half of assiduous work would not be by any means too much.

In conclusion, I may say that this is a profession suitable for women of a scientific, studious, or inventive turn of mind. It is not a profession requiring physical force, but rather keen abilities, good mathematical and scientific training, and the special education of the telegraph engineer.

I can not suggest a brighter prospect for young men, or for intelligent and energetic young women, who wish to learn a profession, than this art, which year by year is steadily assuming more and more importance.