Page:Popular Science Monthly Volume 25.djvu/223

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
THE CHEMISTRY OF COOKERY.
213

per is added; no such effect is produced by gum-arabic, and thus we have an easy test for distinguishing between true and fictitious gum-arabic.

The technical name for describing this persistence of composition with changes of properties is isomerism and bodies thus related are said to be isomeric with each other. Another distinguishing characteristic of dextrin is that it produces a right-handed rotation on a ray of polarized light—hence its name, from dexter, the right.

The conversion of starch into dextrin is a very important element of the subject of vegetable cooking, inasmuch as starch-food can not be assimilated until this conversion has taken place, either before or after we eat it. I will therefore describe other methods by which this change may be effected.

If starch be boiled in a dilute solution of almost any acid, it is converted into dextrin. A solution containing less than one per cent of sulphuric or nitric acid is sufficiently strong for this purpose. One method of commercial manufacture (Payen's) is to moisten ten parts of starch with three of water, containing 1150 of its weight of nitric acid, spreading the paste upon shelves, allowing it to dry in the air, and then heating it for an hour and a half at about 240° Fahr.

But the most remarkable and interesting agent in effecting this conversion is diastase. It is one of those mysterious compounds which have received the general name of "ferments." They are disturbers of chemical peace, molecular agitators that initiate chemical revolutions, which may be beneficent or very mischievous. The morbific matter of contagious diseases, the venom of snake-bite, and a multitude of other poisons, are ferments. Yeast is a familiar example of a ferment, and one that is the best understood. I must not be tempted into a dissertation on this subject, but may merely remark that modern research indicates that many of these ferments are microscopic creatures, linking the vegetable with the animal world; they may be described as living things, seeing that they grow from germs and generate other germs that produce their like. Where this is proved, we can understand how a minute germ may, by falling upon suitable nourishment, increase and multiply, and thus effect upon large quantities of matter the chemical revolution above named.

I have already described the action of rennet upon milk, and the very small quantity which produces coagulation. There appears to be no intercession of living microbia in this case, nor have any been yet demonstrated to constitute the ferment of diastase, though they may be suspected. Be this as it may, diastase is a most beneficent ferment. It communicates to the infant plant its first breath of active life, and operates in the very first stage of animal digestion.

In a grain of wheat, for example, the embryo is surrounded with its first food. While the seed remains dry above-ground there is no assimilation of the insoluble starch or gluten, no growth, nor other