Page:Popular Science Monthly Volume 25.djvu/347

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
OUR DEBT TO INSECTS.
335

chanced to vary most in these directions would best succeed from generation to generation; and their descendants would finally become so modified as to be fitted for fertilization by insects only.

It would be needless here to allude once more to the changes in shape and arrangement thus brought about by the action of the insects. The attraction of perfume and honey, the devices of adaptation and modification, by which plants allure or detain their insect visitors, must be taken for granted, and we must pass on to our proper subject of color.

If, when insects were first beginning to visit flowers, there was any special difference by which the pollen-bearing parts could be easily distinguished from the other organs of the plant, we may be sure that it would be seized upon by the insects as a guide to the existence of food, and would so be further strengthened and developed in all future plants of the same species. Now, we have reason to believe that just such a primitive difference does exist between flowers, and leaves or stems; and that difference is one of color. Even if we look at the catkins and grass-blossoms of our own day, we see that they differ slightly in hue from the foliage of their respective plants. But it seems not improbable that color may have appeared much more frequently and abundantly in primitive wind-fertilized flowers than in those of our own epoch; because wind-fertilized flowers are only injured by the visits of insects, which would be attracted by bright color; and hence natural selection would tend to keep down the development of brilliant tints in them, as soon as these had become the recognized guides of the insect eye. In other words, as flowers have now split up, functionally speaking, into two great groups, the wind-fertilized and the insect-fertilized, any primitive tendency toward the production of bright leaves around the floral organs will have been steadily repressed in the one group and steadily encouraged in the other.

Did such a primitive tendency ever exist? In all probability, yes. The green parts of plants contain the special coloring-matter known as chlorophyl, which is essential to their action in deoxidizing the carbonic acid of the atmosphere. But, wherever fresh energies are being put forth, the reverse process of oxidation is going on; and in this reverse process the most brilliant and beautiful colors make their appearance. We are all familiar with these colors in autumn leaves; and we may also observe them very conspicuously in all young shoots or growing branches, especially in the opening buds of spring, the blanched heads of rhubarb or seakale, and the long sprays of a sprouting potato, grown in a dark cellar. Now, the neighborhood of the floral organs is just such a place where energies are being used up and where color is therefore likely to appear. Mr. Sorby has shown that the pigment in petals is often exactly the same as that in the very young red and yellow leaves of early spring, and the crimson foliage