Page:Popular Science Monthly Volume 26.djvu/59

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
PENDING PROBLEMS OF ASTRONOMY.
49

fication of the elements of this spheroid in order to take account of the new data. It will be better to assume some closely approximate spheroid as a finality; its elements to be forever retained unchanged, while the deviations of the actual surface from this ideal standard will be the subject of continued investigation and measurement.

A more important and anxious question of the modern astronomer is, Is the earth's rotation uniform, and, if not, in what way and to what extent does it vary? The importance, of course, lies in the fact that this rotation furnishes our fundamental measure and unit of time. Up to a comparatively recent date there has not been reason to suspect this unit of any variation sufficient to be detected by human observation. It has long been perceived, of course, that any changes in the earth's form or dimensions must alter the length of the day. The displacement of the surface or strata by earthquakes or by more gradual elevation and subsidence, the transportation of matter toward or from the equator by rivers or ocean-currents, the accumulation or removal of ice in the polar regions or on mountain-tops—any such causes must necessarily produce a real effect. So, also, must the friction of tides and trade-winds. But it has been supposed that these effects were so minute, and to such an extent mutually compensatory, as to be quite beyond the reach of observation; nor is it yet certain that they are not. All that can be said is, that it is now beginning to be questionable whether they are, or are not.

The reason for suspecting perceptible variation in the earth's revolution lies mainly in certain unexplained irregularities in the apparent motions of the Moon. She alone, of all the heavenly bodies, changes her place in the sky so rapidly that minute inaccuracies of a second or two in the time of observation would lead to sensible discrepancies in the observed position; an error of one second in the time, corresponding to about half a second in her place—a quantity minute, certainly, but perfectly observable. No other heavenly body has an apparent movement anywhere nearly as rapid, excepting only the inner satellite of Mars; and this body is so minute that its accurate observation is impracticable, except with the largest telescopes, and at the times when Mars is unusually near the Earth.

Now, of late, the motions of the Moon have been very carefully investigated, both theoretically and observationally; and, in spite of everything, there remain discrepancies which defy explanation. We are compelled to admit one of three things: either the lunar theory is in some degree mathematically incomplete, and fails to represent accurately the gravitational action of the earth and sun and other known heavenly bodies, upon her movements; or some unknown force other than the gravitational attractions of these bodies is operating in the case; or else, finally, the earth's rotational motion is more or less irregular, and so affects the time-reckoning and confounds prediction. If the last is really the case, it is in some sense a most discouraging