Page:Popular Science Monthly Volume 26.djvu/75

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
PENDING PROBLEMS OF ASTRONOMY.
65

an unsolved problem. The varying intensity, polarization, and spectroscopic character of their light; the configurations of the nucleus and its surrounding nebulosity; and especially the phenomena of jets, envelopes, and tail—all demand careful observation and thorough discussion. I think it may be regarded as certain that the explanation of these phenomena when finally reached, if that time ever comes, will carry with it, and be based upon, an enormous increase in our knowledge as to the condition, contents, and temperature of interplanetary space, and the behavior of matter when reduced to lowest terms of density and temperature.

Time forbids any adequate discussion of the numerous problems of stellar astronomy. One work, in its very nature incessant and interminable, consists, of course, in the continual observation and cataloguing of the places of the stars, with ever-increasing precision. These star-places form the scaffold and framework of all other astronomical investigations involving the motions of the heavenly bodies: they are the reference-points and bench-marks of the universe. Ultimately, too, the comparison of catalogues of different dates will reveal the paths and motions of all the members of the starry host, and bring out the great orbit of the sun and his attendant planets. Meanwhile, micrometric observations are in order, upon the individual stars in different clusters, to ascertain the motions which occur in such a case; and the mathematician is called upon again to solve the problem of such movement.

Now, too, since the recent work of Gill and Elkin in South Africa, and of Struve, Hall, and others elsewhere, upon stellar parallax, new hopes arise that we may soon come to some wider knowledge of the subject; that, instead of a dozen or so parallaxes of doubtful precision, we may get a hundred or more relating to stars of widely different brightness and motion, and so be enabled to reach some trustworthy generalizations as to the constitution and dimensions of the stellar universe, and the actual rates of stellar and solar motion in space.

Most interesting, also, are the studies now so vigorously prosecuted by Professor Pickering in this country, and many others elsewhere, upon the brightness of the stars, and the continual variations in this brightness. Since 1875 stellar photometry has become almost a new science.

Then there are more than a myriad of double and multiple stars to watch, and their orbits to be determined; and the nebulæ claim keen attention, since some of them appear to be changing in form and brightness, and are likely to reveal to us some wonderful secrets in the embryology of worlds. Each star also presents a subject for spectroscopic study; for although, for the most part, the stars may be grouped into a very few classes from the spectroscopic point of view, yet, in detail, the spectra of objects belonging to the same group differ considerably and significantly, almost as much as human faces do.