Page:Popular Science Monthly Volume 27.djvu/524

From Wikisource
Jump to navigation Jump to search
This page has been validated.
506
THE POPULAR SCIENCE MONTHLY.

drop. It is about the most rapid and least painful, though perhaps the rarest form of death. In a case of syncope, I have seen the heart's action cease in two minutes from the time the bolt was drawn. Fear largely contributes to this mode of death.

It now remains for us to consider death by dislocation or fracture of the cervical vertebræ, with consequent laceration of the spinal cord. It is frequently supposed that the injury arises from rupture of the transverse ligament of the atlas and pressure on the cord by the odontoid process, but, if ever this does occur, it must be extremely rare. Rupture of the transverse ligament could only take place when the rope was adjusted very high in the neck, with the ring directly in front or behind. And even then the odontoid process would be more likely to break than the ligament. The destructive effect occurs at the point on which the strain is brought to bear, and so the seat of injury varies in different cases. I have seen it take place in the following situations: Complete separation between the second and third cervical vertebræ and fracture of the odontoid process at its junction with the body of the axis; oblique fracture through the body of the axis, leaving the upper fragment with attached odontoid process in situ, and fracture of the arch separating it from the body of the axis; complete separation between the second and third cervical vertebræ above the intervertebral disk, also slight separation and tearing of ligaments between the atlas and the axis; and complete dislocation between the fifth and sixth cervical vertebræ. In this latter case the ring hitched on the chin, and the opposite part of the noose was low in the neck, so that the long leverage action determined the low position of the injury. In every case the vertebræ were separated at the point of injury for at least an inch, the spinal cord was severed, and the vertebral arteries and all the ligaments were torn across.

The shock to the nervous system produces an immediate loss of consciousness, with complete paralysis of all the voluntary muscles. It takes a body moving under the influence of gravity three quarters of a second to fall through the space of nine feet; and, owing to the velocity acquired, according to the law of uniformly accelerated motion, the time occupied in the last seven inches—during which the stretching and tightening of the rope occurs—is only ·0225 of a second. If to this we add, say, ·0275 for the elasticity of the rope, then the whole time during which the shock could be felt is only ·05, or one twentieth of a second. Even from this we must deduct the time which it takes for the nervous impression to travel to the sensorium and back, but, as the nerve-current travels at the rate of one hundred feet per second, this is so slight that, like the atmospheric resistance to the falling body, it may be left out of account. Although loss of consciousness, and it is with this that humanitarians are chiefly concerned, is instantaneous, yet death, as evidenced by the cessation of the heart's action, does not take place so rapidly. It is possible in