Page:Popular Science Monthly Volume 3.djvu/746

From Wikisource
Jump to navigation Jump to search
This page has been validated.
728
THE POPULAR SCIENCE MONTHLY.

an exact description of any technical matter, it is as well to secure correctness by submitting the description to some friend acquainted with the principles of the subject. For, singularly enough, people pay much more attention to these descriptions when met with in novels, than when given in text-books of science, and they thus come to remember thoroughly well precisely what they ought to forget. I think, for instance, that it may not improbably have been some recollection of "Foul Play" which led Mr. Lockyer to make the surprising statement that longitude is determined at sea by comparing chronometer time with local time, which is found "at noon by observing, with the aid of a sextant, when the sun is at the highest point of its path." Our novelists really must not lead the students of astronomy astray in this manner.

It will be clear to the reader, by this time, that the great point in determining the longitude is, to have the true time of Greenwich or some other reference station, in order that, by comparing this time with ship-time, the longitude east or west of the reference station may be ascertained. Ship-time can always be determined by a morning or afternoon observation of the sun, or by observing a known star when toward the east or west, at which time the diurnal motion raises or depresses it most rapidly. The latitude being known, the time of day (any given day) at which the sun or a star should have any particular altitude is known also, and, therefore, conversely, when the altitude of the sun or a star has been noted, the seaman has learned the time of day. But to find Greenwich time is another matter; and, without Greenwich time, ship-time teaches nothing as to the longitude. How is the voyager at sea or in desert places to know the exact time at Greenwich or some other fixed station? We have seen that chronometers are used for this purpose; and chronometers are now made so marvellously perfect in construction that they can be trusted to show true time within a few seconds, under ordinary conditions. But it must not be overlooked that in long voyages a chronometer, however perfect its construction, is more liable to get wrong than at a fixed station. That it is continually tossed and shaken is something, but is not the chief trial to which it is exposed. The great changes of temperature endured, when a ship passes from the temperate latitudes across the torrid zone to the temperate zone again, try a chronometer far more severely than any ordinary form of motion. And then it is to be noted that a very insignificant time-error corresponds to a difference of longitude quite sufficient to occasion a serious error in the ship's estimated position. For this reason and for others, it is desirable to have some means of determining Greenwich time independently of chronometers.

This, in fact, is the famous problem for the solution of which such high rewards were offered and have been given.[1] It was to solve this

  1. For invention of the chronometer, Harrison (a Yorkshire carpenter, and the son of