Page:Popular Science Monthly Volume 46.djvu/48

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
38
THE POPULAR SCIENCE MONTHLY.

mainly those with which we are familiar upon earth. There are a few lines in excess to which we can give no terrestrial name; and there are some still more puzzling gaps in our list. It is a great aggravation of the mystery which besets the question of the elements that, among the lines which are absent from the spectrum of the sun, those of nitrogen and oxygen stand first. Oxygen constitutes the largest portion of the solid and liquid substance of our planet, so far as we know it; and nitrogen is very far the predominant constituent of our atmosphere. If the earth is a detached bit whirled off the mass of the sun, as cosmogonists love to tell us, how comes it that in leaving the sun we cleaned him out so completely of his nitrogen and oxygen that not a trace of these gases remains behind to be discovered even by the sensitive vision of the spectroscope?

All these things the discovery of the spectrum analysis has added to our knowledge; but it has left us as ignorant as ever as to the nature of the capricious differences which separate the atoms from each other, or the cause to which those differences are due.

In the last few years the same enigma has been approached from another point of view by Prof. Mendeléeff. The periodic law which he has discovered reflects on him all the honor that can be earned by ingenious, laborious, and successful research. He has shown that this perplexing list of elements can be divided into families of about seven, speaking very roughly; that those families all resemble each other in this, that as to weight, volume, heat, and laws of combination, the members of each family are ranked among themselves in obedience to the same rule. Each family differs from the others, but each internally is constructed upon the same plan. It was a strange discovery—strangest of all in its manifest defects; for in the plan of his families there were blanks left—places not filled up because the properly constituted elements required according to his theory had not been found to fill them. For a moment their absence seemed a weakness in the professor's idea, and gave an arbitrary aspect to his scheme. But the weakness was turned into strength when, to the astonishment of the scientific world, three of the elements which were missing made their appearance in answer to his call. He had described beforehand the qualities they ought to have; and gallium, germanium, and scandium, when they were discovered shortly after the publication of his theory, were found to be duly clothed with the qualities he required in each. This remarkable confirmation has left Mendeléeff's periodic law in an unassailable position. But it has rather thickened than dissipated the mystery which hangs over the elements. The discovery of these co-ordinate families dimly points to some identical origin, without suggesting the method of their genesis or the nature of their common par-