Page:Popular Science Monthly Volume 48.djvu/854

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
772
POPULAR SCIENCE MONTHLY.

sought in the papers of Crookes, Hertz, Lenard, and Röntgen; and the interest in the mysterious manifestations of these invisible rays is twofold: first, in regard to the possible application of the phenomena to surgery, since the rays show a specific absorption, passing more easily through the flesh than through bones or glass or metallic particles; and, secondly, in relation to the questions whether we are dealing here with radiant matter shot forth from the negative pole or cathode or with longitudinal waves of electricity.

Let us first examine the possibility of the practical application of the cathode photography to surgery. The term cathode is applied to the zinc pole or negative pole of an ordinary battery. It is that terminal of an electrical machine which glows least in the dark when the machine is excited. It is the shortest carbon in the ordinary street electric lamp. The positive carbon or anode burns away twice as fast as the negative carbon or cathode. If the electric light is formed in a high vacuum by means of a great electro-motive force, we no longer have a voltaic arc or a spark; instead of this the exhausted vessel is filled with a feeble luminosity, and a beam of bluish rays is seen to stream from the negative terminal or cathode. When these rays strike the glass walls of the vessel they excite a strong fluorescence. If the glass contains an oxide of uranium this fluorescence is yellow; if it contains an oxide of copper it is green. Röntgen supposes that this fluorescence excited by the cathode rays is connected in some way with the formation of what he terms the X rays. Now, a photograph of the bones in the hand, for instance, can be obtained by placing a sensitive plate in an ordinary photographic plate-holder. Resting the hand on the undrawn slide in the daylight, with the palm of the hand outward and toward the cathode, and about six inches away from it, the bones of the hand are thus brought in the nearest possible position to the sensitive plate. At the time of the present writing, the breast and the abdomen of the human body present too great thickness for successful photographs, and the attempts to obtain representations of the cavity in which the brain is situated have been failures, since the rays do not show any marked difference in fleshy tissues. Nothing can be obtained in these attempts to photograph the brain but a contour of the cavity in which it is situated, and possibly a shadowy representation of a bullet which might be imbedded in the head. The method of obtaining a successful photograph of the hand shows the present limitations of the method. In order to obtain a fairly sharp shadow of a bone or of a shot, it should not be more than an inch away from the sensitive plate. The term shadow, however, is somewhat misleading. The photograph of the hand by the X rays is entirely different from one produced by resting the hand