Page:Popular Science Monthly Volume 56.djvu/453

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
A CENTURY OF GEOLOGY.
439

birth; we trace their growth, their maturity, their decay, their death; we even find in the folded structure of the rock, as it were, the fossil bones of extinct mountains. In a word, we are able now to trace the whole life history of mountains.

Mountains, therefore, have always been a subject of deepest interest both to the popular and the scientific mind—an interest intensified by the splendors of mountain scenery and the perils of mountain exploration. The study of mountains is therefore coeval with the study of geology. As early as the beginning of the present century Constant Prevost observed that most characteristic structure of mountains—viz., their folded strata—and inferred their formation by lateral pressure. All subsequent writers have assumed lateral pressure as somehow concerned in the formation of mountains. But that the whole height of mountains is due wholly to this cause was not generally admitted or even imagined until recently. It was universally supposed that mountains were lifted by volcanic forces from beneath, that the lifted strata broke along the top of the arch, and melted matter was forced through between the parted strata, pushing them back and folding them on each side. And hence the typical form of mountain ranges is that of a granite axis along the crest and folded strata on each flank. But attention has lately been drawn to the fact that some mountains, as, for example, the Appalachian, the Uintah, etc., consist of folded strata alone, without any granite axis. In such ranges it is plain that the whole height is due not to any force acting from below, but to a lateral pressure crushing and folding the strata, and a corresponding thickening and bulging of the same along the line of crushing. Then the idea was applied to all mountain ranges. So soon as the prodigious amount of erosion suffered by mountains, greater often than all that is left of them, was fully appreciated, it became evident that the granite axis so characteristic of mountains was not necessarily pushed up from beneath and protruded through the parted strata, but was in many cases only a sub-mountain core of igneous matter slowly cooled into granite and exposed by subsequent erosion greatest along the crest.

Next, attention was drawn to the enormous thickness of the strata involved in the folded structure of mountains. From this it became evident that the places of mountains before they were formed were marginal sea bottoms off the coasts of continents, and receiving the whole washings of the continents. Thus the steps of the process of mountain formation were (1) accumulation of sediments on offshore sea bottoms until by pari passu subsidence an enormous thickness was attained. This is the preparation. (2) A yielding along these lines to the increasing lateral