Page:Popular Science Monthly Volume 58.djvu/49

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
ADDRESS BEFORE THE BRITISH ASSOCIATION.
41

pecially in the higher animals, and the important conclusion has been arrived at that each kind of tissue invariably arises from one of these layers and from no other.

The layer of cells which contributes, both as regards the number and variety of the tissues derived from it, most largely to the formation of the body is the middle layer, or mesoblast. From it the skeleton, the muscles and other locomotor organs, the true skin, the vascular system, including the blood, and other structures which I need not detail, take their rise. From the inner layer of cells the principal derivatives are the epithelial linings of the alimentary canal and of the air passages. The outer layer of cells gives origin to the epidermis or scarf skin, and to the nervous system. It is interesting to note that from the same layer of the embryo arise parts so different in importance as the cuticle—a mere protecting structure, which is constantly being shed when the skin is subjected to the friction of a towel or the clothes—and the nervous system, including the brain, the most highly differentiated system in the animal body. How completely the cells from which they are derived had diverged from each other in the course of their differentiation in structure and properties is shown by the fact that the cells of the epidermis are continually engaged in reproducing new cells to replace those which are shed, whilst the cells of the nervous system have apparently lost the power of reproducing their kind.

In the early stage of the development of the egg, the cells in a given layer resemble each other in form, and, as far as can be judged from their appearance, are alike in structure and properties. As the development proceeds, the cells begin to show differences in character, and in the course of time the tissues which arise in each layer differentiate from each other and can be readily recognized by the observer. To use the language of von Baer, a generalized structure has become specialized, and each of the special tissues produced exhibits its own structure and properties. These changes are coincident with a rapid multiplication of the cells by cleavage, and thus increase in size of the embryo accompanies specialization of structure. As the process continues, the embryo gradually assumes the shape characteristic of the species to which its parents belonged, until at length it is fit to be born and to assume a separate existence.

The conversion of cells, at first uniform in character, into tissues of a diverse kind, is due to forces inherent in the cells in each layer. The cell plasm plays an active, though not an exclusive part in the specialization; for as the nucleus influences nutrition and secretion, it acts as a factor in the differentiation of the tissues. When tissues so diverse in character as muscular fiber, cartilage, fibrous tissues and bone arise from the cells of the middle or mesoblast layer, it is obvious that, in addition to the morphological differentiation affecting form and struc-