Page:Popular Science Monthly Volume 59.djvu/152

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
142
POPULAR SCIENCE MONTHLY.

two hundred millions of dollars' worth of grain and flour, a surplus left us after feeding our own population as the people of no other country are, or ever were, fed. Farms of tens of thousands of acres in area can now be thus cheaply cultivated.

Electrical engineering is to-day one of the most impressive of all modern developments in mechanical engineering, and the whole world is coming to be served by the installation of the machinery of our light and power distribution 'plants.' While it is true, as often remarked, that electrical engineering is not only a department of mechanical engineering, but one which involves, in large proportion, design, construction and operation in the more familiar departments of mechanical engineering as fundamental bases, it is none the less true that electrical engineering is most closely approximate to pure science and most distinctive in its own character among all specialties taken up by the engineer as individual vocations. The machinery of the business involves all the principles of design and construction taught the mechanical engineer, and the scientific side, once almost purely such, now attaches itself to the mechanical as a lesser to a greater. The whole of this enormous accession to the world's industries has come in within the last half-century, practically, and the telegraph, the telephone, the electric light and the electric railway have succeeded one another since that date. The last is the outcome of the last quarter-century.

The energy which carries the telegram along the wires to-day comes from the steam-engine, which is now a principal and most absolutely essential element; telephones, like telegraph instruments, are the output of most extensive and important manufacturing establishments; electric light and power distributions are all systems of distribution of the power of the steam-engine. To-day there are probably $3,000,000,000 invested, in our country alone, in telegraphs, telephones and electric distributions, of which the larger part by far is invested in the latter. In fact, Mr. T. C. Martin reckons a still larger total, and computes these figures: telegraph, $250,000,000; telephones, $300,000,000; electric lighting, $1,300,000,000; electric railways, $1,800,000,000; other uses of electric power, $250,000,000; manufacturing, $150,000,000; storage batteries, etc., $25,000,000; total, $3,975,000,000, about four thousand millions, nearly four billions, of dollars.

More seductive even than the problems of the electrical engineer, more deceitfully promising than any one of the great problems of the age, seemingly more completely solved in its subsidiary elements and almost on the very verge of solution, completely and perfectly, is the task assigned the inventor from the earliest days of the world, from the day when the first man saw the first bird rise from under his feet and wing its way toward the heavens, safe, free and joyous: the problem of aërodromics, of aviation and aëronautics. Inventors attacked this prob-