Page:Popular Science Monthly Volume 59.djvu/469

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
THE STATISTICAL STUDY OF EVOLUTION.
459
Femur and tibia 81 to .89
Femur and humerus 84 to .87
Humerus and radius 74 to .84
Humerus and ulna 75 to .86
Clavicle and humerus 44 to .63
Clavicle and scapula 12 to .16
Stature and femur 80 to .81
Stature and humerus 77 to .81
Stature and fore-arm .37
Stature and cephalic index .80
Length and breadth of skull 29 to .49
Breadth and height of skull 10 to .34
Length and capacity of skull 50 to .89
Length x breadth x height and capacity of skull 70 to .80
Weight and length (babies) 62 to .64
Weight and stature (adolescents) 50 to .72
Right and left femur .96
Right and left first joint of ring finger .93
First joints of right hand, index and middle fingers .90
First joints of right hand, index and little fingers .82
Metacarpal phalanges, right hand, index and middle fingers .94
Metacarpal phalanges, right hand index and little fingers .89
Strength of pull and stature 22 to .30
Strength of pull and weight 34 to .54

A study of this table shows us how justified was Darwin's contention that the evolution of one organ necessarily means the evolution of many parts of the body.

The modern methods of studying evolution have still another application. It is sometimes said that variation and heredity are the two factors of evolution. Heredity is, however, only a special case of correlated variation; a correlation between parents and offspring or between any two blood relatives. So evolution is reduced |to |a single factor—variation, simple and correlated.

|As a criticism of the new methods of studying variation it has been urged that, after all, they deal not so much with the causes of evolution as with the mere results. |to |this criticism it may be rejoined that the first step toward the determination of the causes of a phenomenon is a precise knowledge of the limitations and conditions of the phenomenon itself; and this is what the quantitative study of variation gives. Science has been more retarded by wasted efforts |to |explain erroneous data than by conscientious attempts |to |discover the precise facts. For when the facts are correctly known the true explanation often follows at once. Even if the explanation does not follow at once the proper direction of experimentation |to |discover causes is indicated. Statistics tell us not only the exact static condition of species to-day under the varying circumstances of environment; but they will enable us |to |measure precisely the results of any change in environment, artificially or naturally brought about. We