Page:Popular Science Monthly Volume 70.djvu/443

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

This, then, would be, under another form, the ruin of the principle of relativity. We are far, it is true, from appreciating the thousandth of a second, but, after all, say some, the earth's total absolute velocity is perhaps much greater than its relative velocity with respect to the sun. If, for example, it were 300 kilometers per second in place of 30, this would suffice to make the phenomenon observable.

I believe that in reasoning thus one admits a too simple theory of aberration. Michelson has shown us, I have told you, that the physical procedures are powerless to put in evidence absolute motion; I am persuaded that the same will be true of the astronomic procedures, however far precision be carried.

However that may be, the data astronomy will furnish us in this regard will some day be precious to the physicist. Meanwhile, I believe that the theorists, recalling the experience of Michelson, may anticipate a negative result, and that they would accomplish a useful work in constructing a theory of aberration which would explain this in advance.

Electrons and Spectra.—This dynamics of electrons can be approached from many sides, but among the ways leading thither is one which has been somewhat neglected, and yet this is one of those which promise us the most surprises. It is movements of electrons which produce the lines of the emission spectra; this is proved by the Zeeman effect; in an incandescent body what vibrates is sensitive to the magnet, therefore electrified. This is a very important first point, but no one has gone farther. Why are the lines of the spectrum distributed in accordance with a regular law? These laws have been studied by the experimenters in their least details; they are very precise and comparatively simple. A first study of these distributions recalls the harmonics encountered in acoustics; but the difference is great. Not only are the numbers of vibrations not the successive multiples of a single number, but we do not even find anything analogous to the roots of those transcendental equations to which we are led by so many problems of mathematical physics: that of the vibrations of an elastic body of any form, that of the Hertzian oscillations in a generator of any form, the problem of Fourier for the cooling of a solid body.

The laws are simpler, but they are of wholly other nature, and to cite only one of these differences, for the harmonics of high order, the number of vibrations tends toward a finite limit, instead of increasing indefinitely.

That has not yet been accounted for, and I believe that there we have one of the most important secrets of nature. A Japanese physicist, M. Nagaoka, has recently proposed an explanation; according to him, atoms are composed of a large positive electron surrounded by a