Page:Popular Science Monthly Volume 72.djvu/353

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

which plants feed, both gaseous and other. These are for the time locked up in the lower water and so withdrawn from the circulation of life. In the autumn, as the lake cools and the thickness of the circulating stratum increases, these matters become available so far as they lie in the upper part of the cooler water, and when the lake has become uniform in temperature to the bottom, and the water is turned over by wind, the whole of this accumulated stock is available for the purposes of plant growth. This may be one of the reasons for the abundant growth of algæ, which takes place in the autumn. But while the non-gaseous products of decomposition may be wholly utilized in the lake, the carbon dioxide is hardly likely to find full use. When it once becomes distributed through the water and new portions of the water are being continually exposed to the air, considerable quantities must escape during the hours when plants are unable to avail themselves of it.

Thus the rudimentary character of the circulatory apparatus of the lake forms an insuperable obstacle to the best utilization of the food supply. It is therefore easy to see why life is relatively so abundant in large and shallow lakes, in which the circulating methods have a maximum efficiency. The fact that these lakes are shallow permits a larger growth of life, since not only is the water available but plants in large quantities may grow from the bottom. But of even more importance than this relation is the fact that since the entire mass of water is kept in circulation by the wind, all the products of decomposition are immediately available for use and the life cycles of the plants may go on as rapidly as their rhythm of growth will permit. The carbon dioxide and other products of decomposition, instead of being locked up in the deeper water and set free only during that season which is least favorable for growth, are utilized immediately and are employed over and over again through the warmer season as the cycles of life and death of the individual plants recur. It is plain that lakes whose margin is wide and shallow, though the middle may be deep, must stand next to the shallow lake in efficiency of means of transportation. Much growth takes place in the shallow waters, much decomposition goes on there, and relatively little of the organic matter sinks into the deep water, to be withdrawn from circulation. Least favorably situated is the deep and steep-sided lake, whose cold depths are continually swallowing almost all of the products of the summer's growth, and give them back for use, only late in the autumn when the season for active life is passing away.

Some lakes may find aid from another source in the task of securing carbon dioxide. Most natural waters contain a certain amount of calcium and magnesium salts in solution, and, for the greater part, these exist in the form of bicarbonates. Lakes whose water is hard