Page:Popular Science Monthly Volume 74.djvu/183

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

The gastric fluid of man and that of frogs and snakes agree perfectly in their action on flesh, as the experiments of Spallanzani prove that the first of these powerfully dissolves meat out of the body. As the menstruum of the two latter animals acted so uniformly on bones, it appeared highly probable the fluid of our own stomach would also. To ascertain this, the condyles of the thigh bone of a chicken, weighing eleven grains, were swallowed; the bone remained a considerable time in the stomach, as was supposed from some uneasy sensations that were occasionally experienced for between two and three days; the fourth day it was discharged, reduced to a shell, weighing only three grains. Thus far the digestion of man and these animals perfectly agree, in solution being the first step towards the conversion of food into chyle; but they differ in some particulars, and probably by attending to these, they may be of use to us. First. They are cold-blooded animals: heat is a powerful agent in all solutions, and the experiments of Spallanzani prove it greatly assists the action of the gastric liquor out of the stomach.

Secondly. They do not masticate their food.

These two inconveniences are obviated, by these animals never drinking when their digestion is going on, so that their fluid acts in its undiluted state; whereas in man, it is always diluted, as he seldom eats without drinking. That this was the case with these animals I had clear proof; for although I examined the contents of their stomachs so often, in no one case could I find any fluid more than a jelly-like substance, appearing to be made up of gastric juice and dissolved flesh. Supposing, however, that the pressure used in bringing up the food of the frogs might have forced the more fluid parts into the duodenum, I resolved to ascertain the fact in another way; this was easily done. A teaspoon could readily be passed into their stomachs, and with this the dissolved food could all be brought up; it was always, however, of the consistence above mentioned. During the time these experiments were made, they were constantly kept in large jars of water. The attention to this circumstance by these animals, which swallow their prey entire, is a necessary part in their digestion, as they require a very powerful menstruum, so as to dissolve not only entire muscles, but also bones. The inference we would draw from it would be, to attend occasionally to what necessity urges them to observe constantly. Thus when our stomachs are weak, or we are troubled with dyspeptic symptoms, like them we ought to avoid much diluting our gastric juice; so that although it were secreted not perfectly healthy, yet having the advantage of acting in its uncombined state, solution and digestion may go on, when it otherwise would not, with the common quantity of drink. Indeed our stomachs in this respect act a kind part to us; for when we make our first dish on broth it seldom relishes much solid aliment after it; hence soups are the first dish at the table of the temperate, and the last at that of the epicure.

Both Spallanzani and Réaumur believed that vegetable food is less easily digested by certain animals than meat. Young reinvestigated this question on frogs. He found that when peas, beans, wheat and bread enclosed in linen bags were introduced into the stomach, all but the bread were still entire at the end of thirty hours; but when the peas and beans were well bruised before introduction they were dissolved. The author concludes that the living principle in the seeds resists digestion. In harmony with this view he found that seeds would germinate when retained in the stomach. An entertaining story is cited from the Italian anatomist Morgani.