Page:Popular Science Monthly Volume 74.djvu/504

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
500
THE POPULAR SCIENCE MONTHLY

Inasmuch as planets, shining by reflected light, do not act upon photographic plates so strongly as stars of the same visual magnitude, we may say that exposures which recorded stars down to the ninth magnitude should have recorded planets down to the eighth. From the known brightness, distance from the sun and approximate diameter of a few of the asteroids revolving in space between Mars's and Jupiter's orbits. Dr. Perrine has computed that an average eighth-magnitude intramercurial planet could scarcely be larger than thirty miles in diameter and that roughly a million such bodies, of great density, would be required to supply the disturbing effect observed in Mercury's orbit.

Taking all these points into consideration, 1 think we may say that the investigations by Perrine, forming a part of the work of the Crocker Eclipse Expeditions from Lick Observatory, have brought the observational side of the Intramercurial Problem, famous for a half century, definitely to a close. It is not contended that no such planets will be discovered in the future; in fact, it would not be surprising, nor in opposition to the opinions here expressed, if several such bodies should be found; but it is confidently believed that any such bodies would fail hopelessly to supply the great mass of material demanded by Le Terrier's theory, as Perrine pointed out in discussing the Sumatra observations of 1901.

On the occasion of a future eclipse of fairly long duration, occurring in the dry season, it might be well to repeat the observations, inasmuch as the instruments are in approximate readiness, and the observations at the three past eclipses were made through thin clouds twice, and with cloud-shortened exposures the third time. The cameras are capable of recording tenth-magnitude stars with three-minute exposures in clear sky. It will not be advisable to use these instruments at the eclipses of the next four years.

There are other chapters, on the theoretical side of the problem, to be entered here.

Professor Newcomb's researches on planetary motions extended much further than Le Verrier's. He found small terms in the motions of all the inner planetg—Mercury, Venus, Earth, Mars—which are not due to the disturbing attractions of any known masses of matter. The chief discrepancies, aside from the large one found in Mercury's motion by Le Verrier and confirmed by Newcomb,[1] are in the perihelion of Mars, and in the nodes of Mercury and Venus. These outstanding residuals will be tabulated on a later page.

The attractions of any one planet or ring of small planets, sufficient to account for the excess motion of Mercury's perihelion, failed to account for the other discrepancies discovered by Newcomb for the

  1. Le Verrier's discrepancy amounted to 38″, Newcomb's to 41″.