Page:Popular Science Monthly Volume 75.djvu/117

From Wikisource
Jump to navigation Jump to search
This page has been validated.
THE FUTURE OF ASTRONOMY
113

small that a long series of years was required and, in general, for want of early observations of the precise positions of the faint stars, this work was confined mainly to the bright stars. Photography is yearly adding a vast amount of material available for this study, but the minuteness of the quantities to be measured renders an accurate determination of their laws very difficult. Moreover, we can thus only determine the motions at right angles to the line of sight, the motion towards us or from us being entirely insensible in this way. Then came the discovery of the change in the spectrum when a body was in motion, but still this change was so small that visual observations of it proved of but little value. Attaching a carefully constructed spectroscope to one of the great telescopes of the world, photographing the spectrum of a star, and measuring it with the greatest care, provided a tool of wonderful efficiency. The motion, which sometimes amounts to several hundreds of miles a second could thus be measured to within a fraction of a mile. The discovery that the motion was variable, owing to the star's revolving around a great dark planet sometimes larger than the star, added greatly not only to the interest of these researches, but also to the labor involved. Instead of a single measure for each star, in the case of the so-called spectroscopic binaries, we must make enough measures to determine the dimensions of the orbit, its form and the period of revolution.

What has been said of the motions of the stars applies also, in general, to the determination of their distances. A vast amount of labor has been expended on this problem. When at length the distance of a single star was finally determined, the quantity to be measured was so small as to be nearly concealed by the unavoidable errors of measurement. The parallax, or one half of the change in the apparent position of the stars as the earth moves around the sun, has its largest value for the nearest stars. No case has yet been found in which this quantity is as large as a foot rule seen at a distance of fifty miles, and for comparatively few stars is it certainly appreciable. An extraordinary degree of precision has been attained in recent measures of this quantity, but for a really satisfactory solution of this problem, we must probably devise some new method, like the use of the spectroscope for determining motions. Two or three illustrations of the kind of methods which might be used to solve this problem may be of interest. There are certain indications of the presence of a selective absorbing medium in space. That is, a medium like red glass, for instance, which would cut off the blue light more than the red light. Such a medium would render the blue end of the spectrum of a distant star much fainter, as compared with the red end, than in the case of a near star. A measure of the relative intensity of the two rays would serve to measure the distance, or thickness of the absorbing medium. The effect would be the