Page:Popular Science Monthly Volume 77.djvu/457

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
DEVELOPMENTS IN PHYSICAL SCIENCE
451
In studying this fourth state of matter we seem at length to have within our grasp and obedient to our control the little indivisible particles which with good warrant are supposed to constitute the physical basis of the universe. We have seen that in some of its properties radiant matter is as material as this table, whilst in other properties it almost assumes the character of radiant energy. We have actually touched the borderland where matter and force seem to merge into one another, the shadowy realm between known and unknown, which for me has always had peculiar temptations. I venture to think that the greatest scientific problems of the future will find their solution in this borderland, and even beyond; here, it seems to me, lie ultimate realities, subtle, far-reaching, wonderful.

The developments of the last few years have demonstrated that no truer prophecy was ever uttered, and the prophet Crookes has lived to witness and to take a part in its fulfilment.

The importance of the present rejuvenation of physical science does not consist alone in the abundance of the harvest. There have been abundant harvests in the past. Consider the decade which closed one hundred years ago. In 1798 Eumford boiled water by friction. In 1799 Davy melted ice by friction in a vacuum and Laplace published his work on mechanics. In 1800 Volta constructed the Voltaic pile, Nicholson and Carlisle decomposed water, Davy discovered the properties of laughing gas and Herschel discovered dark heat rays. In 1801 Piazzi discovered the first asteroid, Eitter the chemical rays and Young the interference of light. In 1802 Wedgewood and Davy made sun pictures by the action of light on silver chloride, and Wollaston discovered dark lines in the sun's spectrum. In 1808 Malus discovered polarization by reflection, Gay Lussac the combination of gases by multiple volumes and Dalton the law of multiple proportions.

So great was the exhilaration and satisfaction produced by these discoveries that many scientists of that period appear to have become infected with something akin to the "sixth decimal" delusion. "Electricity," wrote the French scientist Haüy, "enriched by the labor of so many distinguished physicists seems to have reached the time when a science has no more important steps before it, and only leaves to those who cultivate it the hope of confirming the discoveries of their predecessors and of casting a brighter light on the truths revealed." A statement which was almost immediately followed by the discoveries of Oersted, Ampère, Seebeck and Faraday. A statement which has been followed by the telegraph, the telephone, the dynamo, the motor, the electric light, the electric railway, the Röntgen rays and the wireless telegraph and telephone.

If any one to-day is disposed to criticize the men of science of other times because of their limited view, their complacent opinions and their intolerance of all that did not agree with theories they considered established, let him first read and ponder over what One spake about motes and beams.