Page:Popular Science Monthly Volume 8.djvu/420

From Wikisource
Jump to navigation Jump to search
This page has been validated.
404
THE POPULAR SCIENCE MONTHLY.

But about the close of the last century, Bruno having guessed the fundamental tact of the nebular hypothesis, and Kant having reasoned out its foundation idea, Laplace developed it, showing the reason for supposing that our own solar system, in its sun, planets, satellites, with their various motions, distances, and magnitudes, is a natural result of the diminishing heat of a nebulous mass—a result obeying natural laws.

There was an outcry at once against the "atheism" of the scheme. The war raged fiercely. Laplace claimed that there were in the heavens many nebulous patches yet in the gaseous form, and pointed them out. He showed by laws of physics and mathematical demonstration that his hypothesis accounted in a most striking manner for the great body of facts, and, despite clamor, was gaining ground, when the improved telescopes resolved some of the patches of nebulous matter into multitudes of stars.

The opponents of the nebular hypothesis were overjoyed. They sang pæans to astronomy, because, as they said, it had proved the truth of Scripture.

They had jumped to the conclusion that all nebulæ must be alike—that if some are made up of systems of stars all must be so made up; that none can be masses of attenuated gaseous matter, because some are not.

Science, for a time, halted. The accepted doctrine became this—that the only reason why all the nebulæ are not resolved into distinct stars is, because our telescopes are not sufficiently powerful.

But in time came that wonderful discovery of the spectroscope and spectrum analysis, and this was supplemented by Fraunhofer's discovery that the spectrum of an ignited gaseous body is discontinuous, with interrupting lines; and this, in 1846, by Draper's discovery that the spectrum of an ignited solid is continuous, with no interrupting lines. And now the spectroscope was turned upon the nebulæ and about one-third of them were found to be gaseous.

Again the nebular hypothesis comes forth stronger than ever. The beautiful experiment of Plateau on the rotation of a fluid globe comes in to strengthen if not to confirm it. But what was likely to be lost in this? Simply a poor conception of the universe. What to be gained? A far more worthy idea of that vast power which works in the universe, in all things by law, and in none by caprice.[1]

  1. For Bruno's conjecture (in 1591), see Jevons, vol. ii., p. 299. For Kant's part in the nebular hypothesis, see Lange, "Geschichte des Materialismus," vol. i., p. 266. For value of Plateau's beautiful experiment very cautiously estimated, see W. Stanley Jevons, "Principles of Science," London, 1874, vol. ii., p. 36. Also Elisée Reclus, "The Earth," translated by Woodward, vol. i., pp. 14-18, for an estimate still more careful. For a general account of discoveries of nature of nebulæ by spectroscope, see Draper, "Conflict between Religion and Science." For a careful discussion regarding the spectra of solid, liquid, and gaseous bodies, see Schellen, "Spectrum Analysis," pp. 100, et seq. For a very thorough discussion of the bearings of discoveries made by spectrum analysis upon the