Page:Popular Science Monthly Volume 8.djvu/490

From Wikisource
Jump to navigation Jump to search
This page has been validated.
474
THE POPULAR SCIENCE MONTHLY.

the more refrangible rays that call forth fluorescence. For, if we illuminate them with light which has passed through a red glass, no trace of fluorescence is visible. But, if the red be exchanged for a blue glass, the fluorescence becomes as strongly marked as Avith the direct solar light. A remarkable phenomenon is presented in the splendid bright-green light which is emitted by uranium glass under the action of blue illumination.

The highly-refrangible rays which possess in so high a degree the power of exciting fluorescence are contained in large proportion in the light emitted by a Geissler's tube filled with rarefied nitrogen. In order to expose fluorescing fluids to the influence of this light, the arrangement represented in Fig. 3 may be employed with advantage, A narrow tube is surrounded by a wider glass tube, into which the fluid is introduced by a side opening which can be closed if required. Another form of Geissler's tube is represented in Fig. 4, which contains

Fig. 3.—Geissler's Fluorescence Tube. Fig. 4.—Geissler's Tube with Uranium Glass Spheres.

in its interior a number of hollow spheres composed of uranium glass. Where a beam of reddish violet nitrogen light traverses the tube, the uranium glass balls shine with a beautiful bright-green fluorescent light.

The electric light passing between carbon-points is rich in rays of high refrangibility, indeed the ultra-violet end of its spectrum reaches even farther than that of the solar spectrum. In the light of the magnesium-lamp the ultra-violet rays are also abundant, and both sources