Page:Popular Science Monthly Volume 8.djvu/718

From Wikisource
Jump to navigation Jump to search
This page has been validated.
698
THE POPULAR SCIENCE MONTHLY.

whiting. To the present hour, the beef and mutton tubes remain as limpid as distilled water. Just as in the case of living men and women in Edinburgh, no amount of fetid gas had the power of propagating the plague so long as the organisms which constitute the true contagium did not gain access to the infusions.

The universal prevalence of the germinal matter of bacteria in water has been demonstrated with the utmost evidence by the experiments of Dr. Burdon Sanderson. But the germs in water are in a very different condition, as regards readiness for development, from those in air. In water they are thoroughly wetted, and ready, under the proper conditions, to pass rapidly into the finished organism. In air they are more or less desiccated, and require a period of preparation more or less long to bring them up to the starting-point of the water-germs. The rapidity of development, in an infusion infected by either a speck of liquid containing bacteria or a drop of water, is extraordinary. On January 4th, a thread of glass almost as fine as a hair was dipped into a cloudy turnip-infusion, and the tip only of the glass fibre was introduced into a large test-tube containing an infusion of red mullet; twelve hours subsequently, the perfectly pellucid liquid was cloudy throughout and full of life. A second test-tube containing the same infusion was infected with a single drop of the distilled water furnished by Messrs. Hopkin and Williams; twelve hours also sufficed to cloud the infusion thus treated. Precisely the same experiments were made with herring with the same result. At this season of the year several days' exposure to the air are needed to produce the same effect. On December 31st, a strong turnip-infusion was prepared by digesting in distilled water at a temperature of 120° Fahr. The infusion was divided between four large test-tubes, in one of which it was left unboiled, in another boiled for five minutes, and in the two remaining ones boiled, and, after cooling, infected with one drop of beef-infusion containing bacteria. In twenty-four hours, the unboiled tube and the two infected ones were cloudy; the unboiled tube being the most turbid of the three. The infusion here was peculiarly limpid after digestion; for turnip it was quite exceptional, and no amount of searching with the microscope could reveal in it at first the trace of a living bacterium; still germs were there which, suitably nourished, passed in a single day into bacterial swarms without number. Five days have not sufficed to produce an effect approximately equal to this in the boiled tube, which was uninfected but exposed to the common laboratory air.

There cannot, moreover, be a doubt that the germs in the air differ widely among themselves as regards preparedness for development. Some are fresh, others old; some are dry, others moist. Infected by such germs, the same infusion would require different lengths of time to develop bacterial life. This remark applies to and explains the different degrees of rapidity with which epidemic disease acts upon