Page:Popular Science Monthly Volume 8.djvu/87

From Wikisource
Jump to navigation Jump to search
This page has been validated.
METEOROLOGY OF THE SUN AND EARTH.
77

of colder matter from the atmosphere of the sun, while the upward rush of heated matter was supposed to account for the faculæ or bright patches which almost invariably accompany spots. In the next place the Kew observers, making use not only of the Kew series but of those of Schwabe and Carrington, which were generously placed at their disposal, have discovered traces of the influence of the nearer planets upon the behavior of sun-spots. This influence appears to be of such a nature that spots attain their maximum size when carried by rotation into positions as far as possible remote from the influencing planet that is to say, into positions where the body of the sun is between them and the planet. There is also evidence of an excess of solar action when two influential planets come near together. But, although considerable light has thus been thrown on the periodicity of sunspots, it ought to be borne in mind that the cause of the remarkable period of eleven years and a quarter, originally discovered by Schwabe, has not yet been properly explained. The Kew observers have likewise discovered traces of a peculiar oscillation of spots between the two hemispheres of the sun, and finally their researches will place at the command of the observers the data for ascertaining whether centres of greater and lesser solar activity are connected with certain heliocentric positions.

While the sun's surface was thus being examined both telescopically and photographically, the spectroscope came to be employed as an instrument of research. It had already been surmised by Prof. Stokes, that the vapor of sodium at a comparatively low temperature forms one of the constituents of the solar atmosphere, inasmuch as the dark line D in the spectrum of the sun coincides in position with the bright line given out by incandescent sodium-vapor.

This method of research was greatly extended by Kirchhoff, who soon found that many of the dark lines in the solar spectrum were coincident with the bright lines of sundry incandescent metallic vapors, and a good beginning was thus made toward ascertaining the chemical constitution of the sun.

The new method soon brought forth further fruit when applied in the hands of Huggins, Miller, Secchi, and others, to the more distant heavenly bodies. It was speedily found that the fixed stars had constitutions very similar to that of the sun. But a peculiar and unexpected success was attained when some of the nebulæ were examined spectroscopically. To-day it seems (so rapidly has knowledge progressed) very much like recalling an old superstition to remind you that until the advent of the spectroscope the irresolvable nebulae were considered to be gigantic and remote clusters of stars, the individual members of which were too distant to be separated from each other even with a telescope like that of Lord Rosse. But Mr. Huggins, by means of the spectroscope, soon found that this was not the case, and that most of the nebulae which had defied the telescope gave indica-