Page:Popular Science Monthly Volume 80.djvu/15

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
THE MECHANISTIC CONCEPTION OF LIFE
11

into the egg. This membrane formation led only to a beginning but not to a complete development. We may, therefore, conclude that the spermatozoon causes the development of the egg in a way similar to that which takes place in the case of artificial parthenogenesis. It carries first a substance into the egg which destroys the cortical layer of the egg in the same way as butyric acid does; and secondly a substance which corresponds in its effect to the influence of the hypertonic solution in the sea-urchin egg after the membrane formation.

The question arises as to how the destruction of the cortical layer can cause the beginning of the development of the egg. This question leads us to the process of oxidation. Years ago I had found that the fertilized sea-urchin egg can only develop in the presence of free oxygen; if the oxygen is completely withdrawn the development stops, but begins again promptly as soon as oxygen is again admitted. From this and similar experiments I concluded that the spermatozoon causes the development by accelerating the oxidations in the egg. This conclusion was confirmed by experiments by O. Warburg and by Wasteneys and myself in which it was found that through the process of fertilization the velocity of oxidations in the egg is increased to four or six times its original value. Warburg was able to show that the mere causation of the membrane formation by the butyric acid treatment has the same accelerating effect upon the oxidations as fertilization.

What remains unknown at present is the way in which the destruction of the cortical layer of the egg accelerates the oxidations. It is possible that the cortical layer acts like a solid crust and thus prevents the oxygen from reaching the surface of the egg or from penetrating into the latter sufficiently rapidly. The solution of these problems must be reserved for further investigation.

We, therefore, see that the process of the activation of the egg by the spermatozoon, which twelve years ago was shrouded in complete darkness, to-day is practically completely reduced to a physico-chemical explanation. Considering the youth of experimental biology we have a right to hope that what has been accomplished in this problem will occur in rapid succession in those problems which to-day still appear as riddles.

5. Nature of Life and Death

The nature of life and of death are questions which occupy the interest of the layman to a greater extent than possibly any other purely theoretical problem; and we can well understand that humanity did not wait for experimental biology to furnish an answer. The answer assumed the anthropomorphic form characteristic of all explanations of nature in the prescientific period. Life was assumed to begin with the entrance of a "life principle" into the body; that individual life be-