Page:Popular Science Monthly Volume 83.djvu/115

From Wikisource
Jump to navigation Jump to search
This page has been validated.
THE EARTH AND SUN AS MAGNETS
111
Fig. 5. The Aurora.

more penetrating rays sometimes reach an altitude of 25 miles, the lowest hitherto found for the aurora. The passage through the atmosphere of the electrons which cause the aurora also gives rise to the irregular disturbances of the magnetic needle observed during magnetic storms.

The outflow of electrons from the sun never ceases, if we may reason from the fact that the night sky is at all times feebly illuminated by the characteristic light of the aurora. But when sun-spots are numerous, the discharge of electrons is most violent, thus explaining the frequency of brilliant auroras and intense magnetic storms during sunspot maxima. It should be remarked that the discharge of electrons does not necessarily occur from the spots themselves, but rather from the eruptive regions surrounding them.

Our acquaintance with vacuum tube discharges dates from an early period, but accurate knowledge of these phenomena may be said to begin with the work of Sir William Crookes in 1876. A glass tube, fitted with electrodes, and filled with any gas, is exhausted with a suitable pump until the pressure within it is very low. When a high voltage discharge is passed through the tube, a stream of negatively-charged particles is shot out from the cathode, or negative pole, with great velocity. These electrons, bombarding the molecules of the gas within the tube, produce a brilliant illumination, the character of which depends upon the nature of the gas. The rare hydrogen gas in the upper atmosphere of the earth, when bombarded by electrons from the sun, glows like the hydrogen in this tube. Nitrogen, which is characteristic of a lower level, shines with the light which can be duplicated here.

But it may be remarked that this explanation of the aurora is only hypothetical, in the absence of direct evidence of the emission of electrons by the sun. However, we do know that hot bodies emit electrons.