Page:Popular Science Monthly Volume 85.djvu/131

From Wikisource
Jump to navigation Jump to search
This page has been validated.
THE CELLULAR BASIS OF HEREDITY
127

other, which are unlike any other cell divisions. These are known as the first and second maturation divisions and they are the last divisions which take place in the formation of the egg and sperm. In one or the other of these two maturation divisions the pairs of chromosomes separate along the line of junction, one member of each pair going to one pole of the spindle and the other to the other pole, so that in each of the daughter cells thus formed only a single set of chromosomes is present (Fig. 34 C and D); but since the position of the pairs of chromosomes in the spindle is a matter of chance it rarely happens that all the paternal chromosomes go to one pole and all the maternal ones to the other; thus each of the sex cells comes to contain a complete set of chromosomes though particular individual chromosomes may have come from the father while others have come from the mother. There is reason to believe that homologous chromosomes show general resemblances but individual differences, and consequently when the members of each pair separate and go into the sex cells, these cells differ among themselves because the individual chromosomes in different cells are not the same.

In this way the number of chromosomes in the mature egg or sperm comes to be one half the number present in other kinds of cells, and when the egg and sperm unite in fertilization the whole number is again restored. The double set of chromosomes is known as the diploid number, the single set as the haploid number, and the maturation division in which this reduction from the double to the single set takes place is the reduction division. It is generally held that this reduction takes place in the first of the two maturation divisions (Fig. 34, C, D), and that the second of these divisions is like an ordinary mitosis in that each chromosome splits into two and the halves move apart, such a division being known as an equation division (Fig. 34 E), but it is possible that some chromosome pairs undergo an equation division in the first maturation mitosis and a reduction division in the second, while other chromosome pairs may reverse this order.

It is an interesting fact that long before the reduction of chromosomes had been actually seen Weismann maintained on theoretical grounds that such a reduction must occur, otherwise the number of chromosomes would double in every generation, and he held that this reduction must take place in one of the maturation divisions; this hypothesis of Weismann's is now an established fact.

As the result of these two maturation divisions four cells are formed from each cell (spermatocyte or oocyte) of the growth period. In the spermatogenesis each of these four cells is transformed into a functional spermatozoon (Fig. 34 E), by the condensation of the nucleus into the sperm head and the outgrowth of the centrosome and cytoplasm to form the tail. In the oogenesis only one of these four cells becomes a func-