Page:Popular Science Monthly Volume 9.djvu/295

From Wikisource
Jump to navigation Jump to search
This page has been validated.
THE MECHANICAL ACTION OF LIGHT.
273

Now, having found that this force would carry round a comparatively heavy weight, another useful application suggested itself. If I can carry round heavy mirrors or plates of copper, I can carry round a magnet. Here, then (Fig. 9), is an instrument carrying a magnet, and outside is a smaller magnet, delicately balanced in a vertical position, having the south pole at the top and the north pole at the bottom. As the inside magnet comes round, the outside magnet, being delicately suspended on its centre, bows backward and forward, and, making contact at the bottom, carries an electric current from a battery to a Morse instrument. A ribbon of paper is drawn through the "Morse" by clock-work, and at each contact—at each revolution of the radiometer—a record is printed on the strip of paper by dots; close together if the radiometer revolves quickly, farther apart if it goes slower.

Here the inner magnet is too strong to allow the radiometer to start with a faint light without some initial impetus. Imagine the instrument to be on the top of a mountain, away from everybody, and I wish to start it in the morning. Outside the bulb are a few coils of insulated copper wire, and by depressing the key for an instant I pass an electric current from the battery through them. The interior magnet is immediately deflected from its north-south position, and the impetus thus gained enables the light to keep up the rotation. In a proper meteorological instrument I should have an astatic combination inside the bulb, so that a very faint light would be sufficient to start it, but in this case I am obliged to set it going by an electric current. I have placed a candle near the magnetic radiometer. I now touch the key; the instrument immediately responds; the paper

Fig. 10.

unwinds from the Morse instrument, and on it you will see dots in regular order. I put the candle eight inches off, and the dots come wide apart. I place it five and three-quarters, inches off, and two dots come where one did before. I bring the candle four inches from the instrument, and the dots become four times as numerous (Fig. 10), thus recording automatically the intensity of the light falling on the